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General Information Graphs and Groups, Spectra and Symmetries

General Information

The International Conference and PhD-Master Summer School on "Graphs and Groups, Spectra and
Symmetries"(G2S2) was held on August 15 - 28, 2016, in Novosibirsk, Akademgorodok, Russia. The
main goal of this event was to bring together young researchers and famous mathematicians in the field
of graph theory and group theory, especially those involving group actions on combinatorial objects.

G2S2 was organized by Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk,
Russia.

Program committee:
Alexander Gavrilyuk, Elena Konstantinova (co-chair), Denis Krotov, Alexander Makhnev, Natalia
Maslova, Alexander Mednykh (chair), Andrey Vasil’ev.

Organizing committee:
René van Bevern, Sergey Goryainov, Ekaterina Khomyakova, Elena Konstantinova (chair), Denis
Krotov, Alexey Medvedev, Kristina Rogalskaya, Anna Simonova, Ev Sotnikova, Ivan Takhonov,
Alexandr Valyuzhenich.

Steering committee:
Sergey Goryainov, Elena Konstantinova, Klavdija Kutnar, Alexander Makhnev, Natalia Maslova,
Alexander Mednykh.

Partners:
Krasovskii Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of Sciences
Limited liability company ‘’Scientific service"(Ltd. Co. ‘’Scientific service")

Sponsors:
Russian Foundation for Basic Research, Project 16-31-10290
Novosibirsk State University, Project 5-100, Unit “Informational and humanitarian technologies of
knowledge presentation in educational systems”

Website:
math.nsc.ru/conference/g2/g2s2
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Graphs and Groups, Spectra and Symmetries Program

Conference Program

All scientific activities were held in the Novosibirsk State University, Pirogova 1, Conference room 3307

Monday, August 15

09:00 - 18:00 Registration: Hall of the Conference room 3307
19:00 - 21:00 Welcome party: Hall of the Conference room 3307

Tuesday, August 16

07:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 1

10:00 - 10:50 Lih Hsing Hsu: Lecture 1
11:00 - 11:50 Lih Hsing Hsu: Lecture 2
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 1
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 2
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Sergey Goryainov: New construction of Deza graphs
16:30 - 16:55 Leonid Shalaginov: On Deza graphs with disconnected second neighbourhoods of vertices
17:00 - 17:25 Vladislav Kabanov: On Deza graphs with parameters (v, k, k-1, a)
17:30 - 17:50 Anastasiya Mityanina: On claw-free strictly Deza graphs
17:50 - 18:10 Coffee break
18:10 - 18:30 Ludmila Tsiovkina: Arc-transitive antipodal distance-regular covers of complete graphs:

almost simple case
18:35 - 19:00 Stefan Gyürki: A construction of infinite families of directed strongly regular graphs
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 1

Akademgorodok, Novosibirsk, Russia 5 August, 15-28, 2016



Program Graphs and Groups, Spectra and Symmetries

Wednesday, August 17

07:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 1

10:00 - 10:50 Lih Hsing Hsu: Lecture 3
11:00 - 11:50 Lih Hsing Hsu: Lecture 4
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 3
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 4
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Anatoly Kondrat’ev: Finite groups whose prime graphs do not contain triangles
16:30 - 16:55 Natalia Maslova: On realizability of some graphs as Gruenberg–Kegel graphs of finite

groups
17:00 - 17:25 Maria Zvezdina: On the spectra of automorphic extensions of finite simple exceptional

groups of Lie type
17:30 - 17:50 Viktor Zenkov: A criterion of unbalance of some simple groups of Lie type
17:50 - 18:10 Coffee break
18:10 - 18:30 Anton Baykalov: Intersection of conjugate solvable subgroups in classical groups of Lie

type
18:35 - 19:00 Modjtaba Ghorbani: On the spectra of non-commuting graphs
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 2

Thursday, August 18

07:30 - 09:45 Breakfast
Conference: Invited Talks

10:00 - 10:50 Dragan Marušič: On even-closedness of vertex-transitive graphs
11:00 - 11:50 Klavdija Kutnar: On colour-preserving automorphisms of Cayley graphs
11:50 - 12:10 Coffee break
12:10 - 13:00 Mikhail Muzychuk: Isomorphism problem for Cayley combinatorial objects
13:00 - 14:30 Lunch

Conference: Invited Talks
14:30 - 15:20 Yaokun Wu: The lit-only 𝜎-game and some mathematics around
15:20 - 16:00 Coffee break
16:00 - 16:50 Tatsuro Ito: Towards the classication of (𝑃 and 𝑄)-polynomial association schemes
17:00 - 17:50 Jack Koolen: Applications of Hoffman graphs
17:50 - 18:10 Coffee break
18:10 - 19:00 Alexander Gavrilyuk: On characterization of the Grassmann graphs 𝐽2(2𝑑 + 2, 𝑑)
19:00 - 20:00 Dinner
20:00 - 22:00 Basketball/Volleyball, NSU Sports Complex

August, 15-28, 2016 6 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Program

Friday, August 19

07:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 1

10:00 - 10:50 Lih Hsing Hsu: Lecture 5
11:00 - 11:50 Lih Hsing Hsu: Lecture 6
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 5
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 6
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Farzaneh Gholaminezhad: Structure and Automorphism group of Involution 𝐺-Graphs

and Cayley Graphs
16:30 - 16:55 Mina RajabiParsa: On normal edge-transitive Cayley graphs
17:00 - 17:25 Swamy Narayan: Some Class of golden graphs and its construction
17:30 - 17:50 Anna Simonova: Small cycles in the Bubble-Sort graph
17:50 - 18:10 Coffee break
18:10 - 18:30 Hamid Reza Golmohammadi: Improving some bounds for multiple domination

parameters in graphs
18:35 - 19:00 Nikolai Minigulov: On 3-generated lattices with standard and dual standard elements

among generators
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 1

Saturday, August 20

07:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 1

10:00 - 10:50 Lih Hsing Hsu: Lecture 7
11:00 - 11:50 Lih Hsing Hsu: Lecture 8
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 7
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 8
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Sho Kubota: Strongly regular graphs with the same parameters as the symplectic graph
16:30 - 16:55 Ivan Mogilnykh: Propelinear codes from multiplicative group of 𝐺𝐹 (2𝑚)
17:00 - 17:25 Anastasiya Gorodilova: The linear spectrum of a quadratic APN function and related

open problems
17:30 - 17:50 Vladimir Potapov: On the number of 𝑛-ary quasigroups, Latin hypercubes and MDS

codes
17:50 - 18:10 Coffee break
18:10 - 18:30 Anastasia Vasil’eva: On Fourier decomposition of Preparata-like codes in the graph of

the hypercube
18:35 - 19:00 Anna Taranenko: On transversals in completely reducible quasigroups and in

quasigroups of order 4
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 2

Akademgorodok, Novosibirsk, Russia 7 August, 15-28, 2016



Program Graphs and Groups, Spectra and Symmetries

Sunday, August 21

07:30 - 09:45 Breakfast
Conference: Invited Talks

10:00 - 10:50 Akihiro Munemasa: Triply even codes obtained from some graphs and finite geometries

11:00 - 11:50 Patric Österg̊ard: Is there a (4, 27, 2) partial geometry?
11:50 - 12:10 Coffee break
12:10 - 13:00 Lev Kazarin: Group factorizations, graphs and characters of groups
13:00 - 14:30 Lunch

Conference: Invited Talks
14:30 - 15:20 Andrey Vasil’ev: Cartan coherent configurations
15:20 - 16:00 Coffee break

Conference: Special session
16:00 - 17:00 Ilia Ponomarenko: Graph isomorphism in quasipolynomial time (L. Babai, 2015)
17:00 - 19:00 Discussions
19:00 - 22:00 Conference dinner

Monday, August 22

Excursions/ Sport Activities

August, 15-28, 2016 8 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Program

Tuesday, August 23

07:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 3

10:00 - 10:50 Alexander A. Ivanov: Lecture 1
11:00 - 11:50 Alexander A. Ivanov: Lecture 2
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 4
12:10 - 13:00 Bojan Mohar: Lecture 1
13:00 - 14:30 Lunch
14:30 - 15:20 Bojan Mohar: Lecture 2
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Madeleine Whybrow: Majorana Representations of Triangle-Point Groups
16:30 - 16:55 Dmitry Churikov: Automorphism groups of cyclotomic schemes over finite near-fields
17:00 - 17:25 Olga Kravtsova: The structure of Hentzel–Rúa semifield of order 64
17:30 - 17:50 Ilya Matkin: New infinite family of Cameron-Liebler line classes
17:50 - 18:10 Coffee break
18:10 - 18:30 Ruslan Skuratovskii: Minimal generating systems and structure of Sylow 2-subgroups

of alternating groups 𝑆𝑦𝑙2𝐴2𝑘 and 𝑆𝑦𝑙2𝐴𝑛

18:35 - 19:00 Alexey Shlepkin: About group density function
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 3

Wednesday, August 24

07:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 3

10:00 - 10:50 Alexander A. Ivanov: Lecture 3
11:00 - 11:50 Alexander A. Ivanov: Lecture 4
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 4
12:10 - 13:00 Bojan Mohar: Lecture 3
13:00 - 14:30 Lunch
14:30 - 15:20 Bojan Mohar: Lecture 4
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Shuchita Goyal: Hom complex of Mapping cylinders of graphs
16:30 - 16:55 Mukesh Kumar Nagar: A 𝑞 and 𝑞, 𝑡-analogue of Hook Immanantal Inequalities and

Hadamard Inequality for Trees
17:00 - 17:25 Maryam Jalali-Rad: Erd𝑜s-Ko-Rado Properties of some Finite Groups
17:30 - 17:50 Roman Panenko: Φ-Harmonic Functions on Graphs
17:50 - 18:10 Coffee break
18:10 - 18:30 Keiji Ito: Maximum skew energy of tournaments
18:35 - 19:00 Michele Mulazzani: 4-colored graphs and complements of knots and links
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 4

Akademgorodok, Novosibirsk, Russia 9 August, 15-28, 2016



Program Graphs and Groups, Spectra and Symmetries

Thursday, August 25

07:30 - 09:45 Breakfast
Conference: Invited Talks

10:00 - 10:50 Anton Betten: Graphs with Integral Spectrum
11:00 - 11:50 Yuriy Tarannikov: On plateaued Boolean functions with the same spectrum support
11:50 - 12:10 Coffee break
12:10 - 13:00 Jin Ho Kwak: Notes on zeta functions of regular graphs
13:00 - 14:30 Lunch

Conference: Invited Talks
14:30 - 15:20 Shaofei Du: 2-Arc-Transitive Regular Covers
15:20 - 16:00 Coffee break
16:00 - 16:50 Ilia Ponomarenko: On characterizations of association schemes by intersection numbers
17:00 - 17:50 Matan Ziv-Av: A family of regular coherent non-Schurian graphs, related to extremal

graph theory
17:50 - 18:10 Coffee break
18:10 - 20:00 Conference: Open problems session
20:00 - 22:00 Basketball/Volleyball, NSU Sports Complex

Friday, August 26

08:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 3

10:00 - 10:50 Alexander A. Ivanov: Lecture 5
11:00 - 11:50 Alexander A. Ivanov: Lecture 6
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 4
12:10 - 13:00 Bojan Mohar: Lecture 5
13:00 - 14:30 Lunch
14:30 - 15:20 Bojan Mohar: Lecture 6
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Grigory Ryabov: On the isomorphism problem for Cayley graphs over abelian 𝑝-groups
16:30 - 16:55 Sven Reichard: Schur rings over elementary abelian two-groups
17:00 - 17:25 Alexandr Valyuzhenich: Minimal supports of eigenfunctions of Hamming graphs
17:30 - 17:50 Ilya Mednykh: Circulant graphs and Jacobians
17:50 - 18:10 Coffee break
18:10 - 18:30 Daria Andryukhina: Spectra in ensembles of regular graphs
18:35 - 19:00 Konstantin Kobylkin: Computational complexity of Vertex Cover and related problems

for highly connected
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 3

August, 15-28, 2016 10 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Program

Saturday, August 27

08:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 3

10:00 - 10:50 Alexander A. Ivanov: Lecture 7
11:00 - 11:50 Alexander A. Ivanov: Lecture 8
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 4
12:10 - 13:00 Bojan Mohar: Lecture 7
13:00 - 14:30 Lunch
14:30 - 15:20 Bojan Mohar: Lecture 8
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Yuhei Inoue: The four color theorem and Thompson’s 𝐹
16:30 - 16:55 Aleksey Glebov: Splitting planar graphs of bounded girth to subgraphs with short paths
17:00 - 17:25 Igor Bykov: Completability of hamiltonian cycle in halved cube
17:30 - 17:50 Fadekemi Janet Osaye: On the average eccentricities of some forbidden subgraphs
17:50 - 18:10 Coffee break
18:10 - 18:30 Somayeh Heydari: Some simple groups which are determined by their character degree

graphs
18:35 - 19:00 Irina Starikova: Mathematical Beauty
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 4

Sunday, August 28

08:30 - 09:45 Breakfast
Conference: Invited Talks

10:00 - 10:50 Mitsugu Hirasaka: Congruence of triangles in a metric space
11:00 - 11:50 Ji-Young Ham: On the volume and the Chern-Simons invariant for the 2-bridge link

orbifolds
11:50 - 12:10 Coffee break
12:10 - 13:00 Roman Nedela: Hamilton Cycles in Graphs Embedded into Surfaces

Closing

Akademgorodok, Novosibirsk, Russia 11 August, 15-28, 2016



Abstraсts Graphs and Groups, Spectra and Symmetries

Abstracts

Abstracts of Minicourses, Plenary and Contributed talks are listed

alphabetically with respect to the Presenting Author

August, 15-28, 2016 12 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Abstraсts – Minicourses

Minicourses

Akademgorodok, Novosibirsk, Russia 13 August, 15-28, 2016



Abstraсts – Minicourses Graphs and Groups, Spectra and Symmetries

Minicourse I: Another viewpoint of Euler graphs and Hamiltonian graphs

Lecturer:
Lih-Hsing Hsu

Distinguished Professor, Providence University, Taichung, Taiwan
lihhsing@gmail.com

It may appear that there is little left to do in regards to the study of the Hamiltonian property of
vertex transitive graphs unless there is a major breakthrough on the famous Lovasz conjecture. However,
if we extend the concept of the traditional Hamiltonian property to other Hamiltonicity properties, then
there is still much left to explore. In this series of lectures, I will introduce some of these Hamiltonicity
properties, namely fault tolerant Hamiltonian, spanning connectivity, and mutually independent Hamil-
tonicity.

The course contains eight lectures.

August, 15-28, 2016 14 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Abstraсts – Minicourses

Minicourse II: The Cayley Isomorphism Problem

Lecturer:
Edward Dobson

Mississippi State University, USA
University of Primorska, Koper, Slovenia

dobson@math.msstate.edu

In 1967 Ádám conjectured that two circulant graphs Cay(Z𝑛, 𝑆) and Cay(Z𝑛, 𝑇 ) are isomorphic if
and only if there exists 𝑚 ∈ Z*

𝑛 such that 𝑚𝑆 = 𝑇 . While this conjecture is not true (although from two
different points of view it is mostly true), the conjecture was quickly generalized to ask for which groups
𝐺 any two Cayley graphs Cay(𝐺,𝑆) and Cay(𝐺,𝑇 ) are isomorphic if and only if they are isomorphic
by an automorphism of 𝐺 (or 𝛼(𝑆) = 𝑇 for some automorphism 𝛼 ∈ Aut(𝐺)). Such a group 𝐺 is a
CI-group with respect to graphs. It is easy to show that 𝛼(Cay(𝐺,𝑇 )) is a Cayley graph of 𝐺 for
every subset 𝑇 of 𝐺 and 𝛼 ∈ Aut(𝐺), so in testing isomorphism between two Cayley graphs of a group
𝐺 one must always check to see if the automorphisms of 𝐺 are isomorphisms. From this point of view,
asking whether or not a group is a CI-group with respect to graphs is the same as asking if the minimal
or necessary list of permutations that must be checked as possible isomorphisms is also a sufficient list
of permutations to check. We will develop some of the main tools that are used to determine if a group
is a CI-group with respect to graphs, along with appropriate permutation group theory. The groups 𝐺
we will focus on will mainly be of small order (where small order means that there are not many prime
factors). These groups are rich enough to illustrate some, but not all, of the proof techniques that have
been developed to show a group is a CI-group with respect to graphs as well as to highlight some of the
obstacles for a group to be a CI-group with respect to graphs. We will also discuss how the techniques
developed to attack the Cayley isomorphism problem can be modified to attack the isomorphism problem
from graphs that are highly symmetric but not Cayley graphs nor even vertex-transitive, as well as to
attack similar isomorphism problems for other classes of combinatorial objects.

The course contains eight lectures.

Akademgorodok, Novosibirsk, Russia 15 August, 15-28, 2016



Abstraсts – Minicourses Graphs and Groups, Spectra and Symmetries

Minicourse III: Graphs and their eigenvalues

Lecturer:
Bojan Mohar

Simon Fraser University, Canada
mohar@sfu.ca

The course contains eight lectures:

1-2. Adjacency matrix and its eigenvalues (basic properties, Perron–Frobenius theory, interlacing,
quotients and equitable partitions, distance-regular graphs). Algebraic and combinatorial properties.
3. Laplacian and expansion (Laplacian matrix, expansion lemma, expanders and Ramanujan graphs)
4-5. Random graphs (random graphs and random matrices, Wigner’s semicircle theorem, extensions,
quasirandom graphs).
6-7. Applications (Huckel theory, HOMO-LUMO separation, perfect graphs, more on expanders,
regularity lemma and graph limits).
8. Hermitian adjacency matrix of a digraph.

August, 15-28, 2016 16 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Abstraсts – Minicourses

Minicourse IV: Y-groups via Majorana Theory

Lecturer:
Alexander A. Ivanov

Department of Mathematics, Imperial College, South Kensington, London, UK
a.ivanov@imperial.ac.uk

Motivated by an earlier observation by B. Fischer, around 1980 J.H. Conway conjectured that a specific
Coxeter diagram 𝑌443 together with a single additional (so-called “spider”) relation form a presentation
for the direct product of the largest sporadic simple group known as the Monster and a group of order
2. This conjecture was proved by S.P. Norton and the lecturer in 1990. It appears promising to revisit
this subject through currently developing axiomatic approach to the Monster and its non-associative
196884-dimensional algebra, which goes under the name “Majorana Theory”.

The course contains eight lectures.

Akademgorodok, Novosibirsk, Russia 17 August, 15-28, 2016
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Plenary Talks
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Graphs and Groups, Spectra and Symmetries Abstraсts – Plenary Talks

Graphs with Integral Spectrum

Anton Betten
Colorado State University, USA
betten@math.colostate.edu

The spectrum of a graph is the set of eigenvalues of the adjacency matrix of the graph, together with
their multiplicities. In 1974, Harary and Schwenk initiate the study of graphs with integral spectra, that
is, graphs whose eigenvalues are all integral.

In this talk, we will look at integral Cayley graphs and highlight some open problems [1]. One question
is whether the Cayley graph obtained from the symmetric group with respect to the generators of the form
(1, 𝑖) 𝑖 = 2, . . . , 𝑛 is integral. This graph is known as the star graph. A connection to the representation
theory of the symmetric group is explored [2].

References

[1] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral? Electron. J. Combin. 16(1) (2009) 17.

[2] Laszlo Babai, Spectra of Cayley Graphs. Journal of Combinatorial Theory 27B (1979) 180–189.
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Abstraсts – Plenary Talks Graphs and Groups, Spectra and Symmetries

2-Arc-Transitive Regular Covers

Shaofei Du
School of Mathematical Sciences, Capital Normal University, Beijing, China

dushf@mail.cnu.edu.cn

A cover 𝑋 of a given graph 𝑌 is an homomorphism 𝜑 from 𝑋 to 𝑌 , locally it is a bijection. This is one
of fundamental and important concepts in topological graph theory. Another motivation for us to study
covers might be from classifications of finite arc-transitive graphs, mainly 2-arc-transitive graphs. In this
talk, I shall collect some our recent results on 2-arc-transitive regular covers. In particular, by exhibiting
some examples I try to show you the relationships between construction of covers and group extension
theory, group representation theory and topological graph theory.

August, 15-28, 2016 20 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Abstraсts – Plenary Talks

On characterization of the Grassmann graphs 𝐽2(2𝑑 + 2, 𝑑)

Alexander Gavrilyuk
University of Science and Technology of China, Hefei, China

Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
sasha@ustc.edu.cn

This is joint work with Jack Koolen

The Grassmann graph 𝐽𝑞(𝑛, 𝑑), 𝑛 ≥ 2𝑑, is a graph (of diameter 𝑑) defined on the set of 𝑑-dimensional
subspaces of an 𝑛-dimensional vector space over the finite field F𝑞, with two subspaces being adjacent if
their intersection has dimension 𝑑− 1.

In 1995, Metsch [1] showed that a distance-regular graph with the same intersection array as 𝐽𝑞(𝑛, 𝑑)
is indeed 𝐽𝑞(𝑛, 𝑑) unless 𝑛 = 2𝑑, 𝑛 = 2𝑑 + 1, (𝑛 = 2𝑑 + 2 if 𝑞 ∈ {2, 3}), or (𝑛 = 2𝑑 + 3 if 𝑞 = 2).

In 2005, Van Dam and Koolen [2] constructed the twisted Grassmann graphs, a family of distance-
regular graphs with the same intersection array as 𝐽𝑞(2𝑑+1, 𝑑), but not isomorphic to them, for all prime
powers 𝑞 and 𝑑 ≥ 2.

In 2015, the authors showed that the Grassmann graph 𝐽2(2𝑑, 𝑑) can be characterized by its
intersection array, if the diameter 𝑑 is an odd number or large enough.

In this talk, we will discuss a characterization of the Grassmann graphs 𝐽2(2𝑑 + 2, 𝑑).
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On the volume and the Chern-Simons invariant for the 2-bridge link orbifolds

Ji-Young Ham
Department of Science, Hongik University, Seoul, Korea

Department of Mathematical Sciences, Seoul National University, Seoul, Korea
jiyoungham1@gmail.com

This is joint work with Joongul Lee, Alexander Mednykh and Aleksey Rasskazov

We extend some part of the unpublished paper [1] written by Mednykh and Rasskazov. Using the
approach indicated in this paper we derive the Riley–Mednykh polynomial for some family of the two
bridge link orbifolds. As a result we obtain explicit formulae for the volume of cone–manifolds and the
Chern–Simons invariant of orbifolds of the knot with Conway’s notation 𝐶(2𝑛, 4).
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Characterization of finite metric spaces by their isometric sequences

Mitsugu Hirasaka
Pusan National University, South Korea

hirasaka@pusan.ac.kr

This is a joint work with Masashi Shinohara

Let (𝑋, 𝑑) be a metric space where 𝑑 : 𝑋 ×𝑋 → R≥0 is a metric function. For 𝐴,𝐵 ⊆ 𝑋 we say that
𝐴 is isometric to 𝐵 if there exists a bijection 𝑓 : 𝐴 → 𝐵 such that 𝑑(𝑥, 𝑦) = 𝑑(𝑓(𝑥), 𝑓(𝑦)) for all 𝑥, 𝑦 ∈ 𝐴.
We shall write 𝐴 ≃ 𝐵 if 𝐴 is isometric to 𝐵. For a positive integer 𝑘 we denote by 𝐴𝑘(𝑋) the quotient
set of

(︀
𝑋
𝑘

)︀
by ≃, i.e.

𝐴𝑘(𝑋) =

{︂
[𝐴] | 𝐴 ∈

(︂
𝑋

𝑘

)︂}︂
,

where [𝐴] is the isometry class containing 𝐴. For a finite metric space (𝑋, 𝑑) we call (|𝐴𝑖(𝑋)| : 𝑖 =
1, 2, . . . , |𝑋|) the isometric sequence of 𝑋. In this talk we aim to characterize metric spaces 𝑋 by their
isometric sequences, and classify them with the property |𝐴2(𝑋)| = |𝐴3(𝑋)| ≤ 3.

Akademgorodok, Novosibirsk, Russia 23 August, 15-28, 2016



Abstraсts – Plenary Talks Graphs and Groups, Spectra and Symmetries

Towards the classification of (𝑃 and 𝑄)-polynomial association schemes

Tatsuro Ito
School of Mathematical Sciences, Anhui University, Hefei, China

tito@staff.kanazawa-u.ac.jp

This is a survey talk on the subject of the title above. In his lectures at Ohio State University in
the late 70s, Eiichi Bannai proposed the classification of (P and Q)-polynomial association schemes; he
regarded them as finite, combinatorial analogue of compact symmetric spaces of rank 1. I will trace the
history back to the late 60s and explain how the concepts of P/Q-polynomial association schemes arose
in relation to finite permutation groups, coding/design theory. I will then overview the progress of the
classification in the 80s, 90s and thereafter. Finally I will present my personal view about the scope for
the classification problem.

This talk is based on my lecture at the GAP seminar of USTC which is aimed at helping graduate
students bridge the gap between established mathematics and the frontiers of mathematical research.
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Group factorizations, graphs and characters of groups

Lev Kazarin
Yaroslavl P.Demidov State University, Department of Mathematics, Yaroslavl, Russia

lsk46@mail.ru

1. Group factorizations. Let 𝐺 be a group and 𝐴,𝐵 be its subgroups. The group 𝐺 has a
factorization 𝐺 = 𝐴𝐵 if every element 𝑔 ∈ 𝐺 can be expressed in the form 𝑔 = 𝑎𝑏 with 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. By
famous Burnside’s 𝑝𝛼-lemma (1903) the group 𝐺, having the conjugacy class 𝑥𝐺 of a prime-power size
𝑝𝛼 > 1 is non-simple. Clearly, in this case 𝐺 has a factorization of the form: 𝐺 = 𝐶𝐺(𝑥)𝑃 , where 𝑃 is a
Sylow 𝑝-subgroup. As an immediate consequence, every group of order 𝑝𝑎𝑞𝑏 for prime numbers 𝑝, 𝑞 and
natural numbers 𝑎, 𝑏 is soluble. Further investigations due to H. Wielandt, O. Kegel, B. Huppert, N. Itô
and others leads to many classical result in this area. For instance, finite group 𝐺 = 𝐴𝐵 with nilpotent
subgroups 𝐴 and 𝐵 is soluble. The last result in this area, not using FSGC, is a theorem of L. Kazarin
(1979), solving Shemetkov - Scott conjecture: the group 𝐺 = 𝐴𝐵 factorized by subgroups 𝐴 and 𝐵 such
that 𝐴 and 𝐵 have nilpotent subgroups 𝐴0 and 𝐵0 of index at most 2 in the corresponding group, is
soluble.

Later (in 1990) M. Liebeck, Sh. Praeger and J. Saxle have classified maximal factorizations of all finite
simple groups, using FSGC. However, many simple problems, concerning factorizations, remains open.
A short survey of the results in this area could be find in [1]. Some new results were obtained in this
century.

Recall that the group𝑋 is called 𝜋-decomposable, if𝐺 is a direct product of its Hall 𝜋-subgroup 𝑂𝜋(𝑋)
and a subgroup 𝑂𝜋′(𝑋) of coprime order. The following (containing classical results due H. Wielandt and
O. Kegel) was proved by L. Kazarin, A. Martinez-Pastor and M. D. Perez-Ramos [2] in 2015.

Theorem 1. Let 𝜋 be a set of odd primes. If a finite group 𝐺 = 𝐴𝐵 is a product of two 𝜋-decomposable
subgroups 𝐴 and 𝐵, then 𝑂𝜋(𝐴)𝑂𝜋(𝐵) is a subgroup of 𝐺.

As a corollary, we prove that the product 𝐺 = 𝐴𝐵 = 𝐴𝐶 = 𝐵𝐶 of permutable finite 𝜋-decomposable
subgroups 𝐴,𝐵 and 𝐶 is 𝜋-decomposable.

A generalization of some results due to Z. Arad, E. Fisman and E. M. Palchik is also presented in the
talk.

Note that there is a natural “geometric” situation, when the factorizations are raised. If𝐺 is a transitive
permutation group acting on a set Ω and a subgroup 𝐻 ≤ 𝐺 also acts transitively on Ω, then 𝐺 has a
factorization 𝐺 = 𝐻𝐾, where 𝐾 is a stabilizer of a point 𝛼 ∈ Ω.

There is another type of factorizations. They are, so-called, 𝐴𝐵𝐴-factorizations. More precisely, let
𝐴 and 𝐵 be a subgroups of 𝐺. We say that 𝐺 is an 𝐴𝐵𝐴-group, if for every element 𝑔 ∈ 𝐺 there exist
𝑎, 𝑎′ ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑔 = 𝑎𝑏𝑎′. There are many interesting classes of groups possessing non-
trivial 𝐴𝐵𝐴-factorizations. Among them all finite simple groups of Lie type and alternating groups of
permutation of degree 𝑛 ≥ 5. It is unknown whether every sporadic simple group possesses non-trivial
𝐴𝐵𝐴-factorization. There are some interesting results about such factorizations since first papers of
D. Gorenstein and I. M. Herstein. But in general the situation is very complicated. One recent result [3]
belongs to B. Amberg and L. Kazarin:

Theorem 2. Let a finite group 𝐺 = 𝐴𝐵𝐴 cyclic subgroup 𝐵. If 𝐴 is abelian or 𝐴 is nilpotent of odd
order and 𝐺𝐶𝐷(|𝐴|, |𝐵|) = 1, then 𝐺 is soluble.

Note that the structure of a nonsoluble 𝐴𝐵𝐴-group with abelian subgroups 𝐴 and 𝐵 is still unknown.
Of course, every 2-transitive permutation group is an 𝐴𝐵𝐴-group for every subgroup 𝐵, not contained

in 𝐴. It seems that such factorizations exists more often if 𝐺 is a rank 3 permutation group. In each case
the authors [3] have find some new approach to this problem based on the properties of involutions.

2. Some arithmetic properties of the characters of groups. It is well-known that the main
tool for the proofs of theorems concerning groups with factorizations was character theory. This is clear
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for Burnside’s 𝑝𝛼-lemma. In general, a finite group has a factorization 𝐺 = 𝐴𝐵 iff ⟨1𝐺𝐴, 1𝐺𝐵⟩ = 1. Similar
criterions exist also for 2-transitive groups and rank 3 permutation groups.

E. P. Wigner has proved (in 1941) very interesting result, concerning finite groups with the following
property. Let 𝐺 be a real finite group all whose all irreducible representations are 𝑇1, 𝑇2, . . . 𝑇𝑘. If for any
𝑖, 𝑗 ≤ 𝑘 the decomposition 𝑇𝑖 ⊗ 𝑇𝑗 =

∑︀
𝑐𝑠𝑖𝑗𝑇𝑠 has all coefficients 𝑐

𝑠
𝑖𝑗 ≤ 1, then the following holds:∑︁

𝑔∈𝐺

|𝐶𝑔(𝑔)|2 =
∑︁
𝑔∈𝐺

𝜁(𝑔)3.

Here 𝜁(𝑔) is the number of solutions in 𝐺 of the equation 𝑥2 = 𝑔. E.Wigner called groups with this
property SR-groups. The solubility of finite SR-groups was proved by L. Kazarin with his students in
2010. One of the results of similar nature obtained in 2011 with B. Amberg, is as follows:

Theorem 3. Let 𝐺 be a finite simple group and 𝜏 be an arbitrary involution of 𝐺. If |𝐺| > 2|𝐶𝐺(𝜏)|,
then 𝐺 has a proper subgroup of order at least |𝐺|1/2. If |𝐺| > |𝐶𝐺(𝜏)|3, then |𝐺| < 𝑘(𝐺)3, where 𝑘(𝐺)
is a class number of 𝐺.

The behavior of the degrees of irreducible characters is of special interest for many authors. One of the
famous computational problems in computational mathematics is the complexity of matrix computation.
In celebrated works of Umans with coauthors this is reduced in some sense to estimate of the number∑︀

𝜒∈𝐼𝑟𝑟(𝐺) 𝜒(1)3 for certain groups 𝐺. The cases when the group 𝐺 has an irreducible character of large

degree, is very interesting. One new result was obtained in [2] by L. Kazarin and S. Poiseeva.

Theorem 4. Let 𝐺 be a finite group with an irreducible character Θ such that |𝐺| ≤ 2Θ(1)2. If 𝐺 is not
a 2-group, then every irreducible character of 𝐺 is a constituent of Θ2. If Θ(1) = 𝑝𝑞 for some primes 𝑝
and 𝑞, then 𝐺 has an abelian normal subgroup 𝑁 of index 𝑝𝑞.

There are many simple groups 𝐺 with the property |𝐺| < 𝑐𝜒(1)2 for some irreducible character 𝜒 of 𝐺
and some small constant 𝑐. As an example, for 𝑐 < 3 there is the Thompson group 𝑇ℎ of order 190373967.

3. Graphs on the sets of primes. There are several types of graphs determined on the prime
divisors of the order of a group. Let 𝑥 be a natural number and 𝜋(𝑥) be the set of its prime divisors. If 𝑋
is the set of natural numbers, then 𝜌(𝑋) = ∪𝑥∈𝑋𝜋(𝑥). Denote the graph Γ(𝑋) with the set 𝜌(𝑋) = 𝑉 (𝑋)
of its vertices. Two vertices are adjacent if 𝑝𝑞 | 𝑥 for some 𝑥 ∈ 𝑋.

Another graph ∆(𝑋) on the set 𝑋 is defined as follows. Vertices 𝑎 and 𝑏 are adjacent, if the greatest
common divisor of 𝑎 and 𝑏 is bigger than one.

It seems that the first (after Cayley) graphs in group theory were invented by S. A. Chounikhin in
1938. In an explicit form this was done by L. Kazarin in 1978. Prime graph of Grünberg-Kegel, 𝐺𝐾(𝐺),
became popular since 1981 after paper by J. S. Williams and later by A. S. Kondratiev in connection of
a program of characterization of a simple groups by spectrums. In 𝐺𝐾(𝐺) the set 𝑋 is the set of prime
divisors of elements of 𝐺. In this case primes 𝑝 and 𝑞 are adjacent if there exists in 𝐺 an element whose
order is 𝑝𝑞.

Another prime graph Γ𝑠𝑜𝑙(𝐺) was invented by S. Abe and N. Iiyori. In this case 𝑋 is the set of a prime
divisors of soluble subgroups of 𝐺. Two primes 𝑝 and 𝑞 are adjacent if there exists a soluble subgroup of
𝐺 whose order is divisible by 𝑝𝑞.

One of recent results for this graphs related to finite simple groups is due B. Amberg and L. Kazarin.
Previously S. Abe and N. Iiyori described finite simple groups whose graph Γ𝑠𝑜𝑙(𝐺) is a clique. Define by
𝑡𝑠(𝐺) the largest number of independent vertices in Γ𝑠𝑜𝑙(𝐺).

Theorem 4. Let 𝐺 be a finite simple group such that 𝑡𝑠(𝐺) = 2 (i.e. the dual graph to
Γ𝑠𝑜𝑙(𝐺) has no triangles). Then 𝐺 is isomorphic to one of the following groups: 𝐿±

𝑛 (𝑞)(𝑛 ≤
7), 𝑆4(𝑞), 𝑃Ω+

8 (2),3 𝐷4(2),2 𝐹4(2)′, 𝐺2(3), 𝑆6(2),𝑀11,𝑀12,𝑀22, 𝐻𝑆,𝑀𝑐𝐿, 𝐽2 or 𝐴𝑛(𝑛 ≤ 10).

The proof uses two papers by A. V. Vasiliev and E. P. Vdovin. As a corollary we obtain the description
of slightly larger class of finite simple groups, than groups having a factorization by two soluble subgroups.
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Theorem 5. Let 𝐺 be a finite simple group with soluble subgroups 𝐴 and 𝐵. If 𝜋(𝐺) = 𝜋(𝐴) ∪ 𝜋(𝐵),
then 𝐺 belongs to the list of groups in the conclusion of Theorem 4.

The graph Γ𝐴(𝐺) was defined by L. Kazarin, A. Martinez-Pastor and M. D. Perez-Ramos in 2005. This
graph is defined on the set of prime divisors of the order of a group 𝐺 in a following manner. Two vertices
𝑝 and 𝑞 in 𝜋(𝐺) are adjacent if for a Sylow 𝑝 subgroup 𝑃 of 𝐺 the order of a group 𝑁𝐺(𝑃 )/𝑃𝐶𝐺(𝑃 ) is
divisible by 𝑞. Of course, the edge (𝑞, 𝑝) exists if |𝑁𝐺(𝑄)/𝑄𝐶𝐺(𝑄)| is divisible by 𝑝.

One of the important results concerning these graphs is as follows:

Theorem 6. Let 𝐺 be a finite almost simple group. Then the graph Γ𝐴(𝐺) is connected.

Note that if (𝑝, 𝑞) is an edge in Γ𝐴(𝐺), then (𝑝, 𝑞) is an edge in Γ𝑠𝑜𝑙(𝐺), but the graph Γ𝐴(𝐺) of a
soluble group could be non-connected. Hence our theorem 6 gives another proof of a theorem by S. Abe
and N. Iiyori. Theorem 6 is a main tool for some results in formation theory concerning formation closed
uner taking of normalizers of Sylow subgroups.
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Applications of Hoffman graphs

Jack Koolen
University of Science and Technology of China, Hefei, China
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In this talk I will discuss the origins and recent applications of Hoffman graphs as defined by Woo and
Neumaier (1995). Among these applications are to study graphs with smallest eigenvalue -3, constructing
(regular) graphs with a fixed smallest eigenvalue, and trees with spectral radius three.
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On colour-preserving automorphisms of Cayley graphs

Klavdija Kutnar
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This is joint work with Ademir Hujdurović, Edward Dobson, Dave Morris and Joy Morris

We study the automorphisms of a Cayley graph that preserve its natural edge-colouring. In this talk
recent results about colour-preserving automorphisms of Cayley graphs will be presented. More precisely,
we are interested in groups 𝐺, such that every such automorphism of every connected Cayley graph on 𝐺
has a very simple form: the composition of a left-translation and a group automorphism. We find classes
of groups that have the property, and we determine the orders of all groups that do not have the property.
We also have analogous results for automorphisms that permute the colours, rather than preserving them.
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Notes on zeta functions of regular graphs
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In this talk, we quickly review zeta functions of (di)graphs and computing 𝐿-functions associated with
some graph coverings.
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On even-closedness of vertex-transitive graphs
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When dealing with symmetry properties of combinatorial objects, such as graphs admitting a transitive
group action, that is, vertex-transitive graphs, one of the fundamental questions is to determine their full
automorphism group. While some symmetries of such objects are obvious, certain additional symmetries
remain hidden or difficult to grasp. When this is the case, the goal is to find a reason for their existence
and a method for describing them.

Along these lines the above question reads as follows: Given a transitive group 𝐻 acting on a set 𝑉
of vertices of a graph, determine whether 𝐻 is its full automorphism group or not. When the answer is
no, find a method to describe the additional automorphisms.

We propose to study such group “extensions” by considering the existence of odd automorphisms (as
opposed to even automorphisms) that is automorphisms that act as odd permutations on the vertex set
of a graph. The implications go beyond the simplicity of the concept of even/odd permutations alone.
For example, given a group 𝐻 consists of even permutations only, a partial answer to the above question
could be given provided the structure of the graph in question forces existence of automorphisms acting
as odd automorphisms.

In this talk some recent results in regards to the above problem will be considered. A special emphasis
will be given to the class of cubic symmetric graphs where a complete solution will be presented. These
results suggest that the even/odd question is likely to uncover certain much more complex structural
properties of graphs that go beyond simple arithmetic conditions.
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Triply even codes obtained from some graphs and finite geometries
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This is joint work with Koichi Betsumiya

A triply even code is a binary linear code in which the weight of every codeword is divisible by 8. By
Lam and Yamauchi [3], every triply even code of length a multiple of 16 containing the all-ones vector
is the structure code of some holomorphic framed vertex operator algebra. Motivated by this fact, we
classified maximal triply even codes of length 48, and discovered an infinite family can be obtained from
the triangular graphs [1].

In this talk, we present another infinite family of triply even codes, derived from the odd-orthogonal
graphs [1, Section 12.2]. Let 𝑉 be a 4-dimensional vector space over a finite field of odd characteristic,
equipped with a nondegenerate quadratic form of Witt index 1. Define a graph Γ whose vertex set is
the set of nonisotropic projective points of plus type, where two vertices are adjacent whenever the line
through these points is a tangent. Then the row vectors of the adjacency matrix of Γ generate a triply
even code of length 𝑞(𝑞2 + 1)/2.

The proof of this fact amounts to showing that the number of common neighbors of three distinct
vertices is always even.
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Isomorphism problem for Cayley combinatorial objects
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A Cayley object over a finite group 𝐻 is any relational structure ℛ with point set 𝐻 which is invariant
under the group of right translations 𝐻𝑅. The well-known examples of Cayley objects include Cayley
graphs, Cayley maps, group codes etc. The isomorphism problem for Cayley objects may be formulated
as follows: Given two combinatorial objects over the group 𝐻, find whether they are isomorphic or not.

In may talk I’ll present the old and the new results which solves the above problem for different classes
of objects.
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Hamilton Cycles in Graphs Embedded into Surfaces
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This is joint work with M. Kotrbč́ık and M. Škoviera

Although hundreds of papers deals with the problem of existence of a Hamiltonian cycle in a graph,
there is a luck of results on the hamiltonicity of cubic graphs. Among others, it is well-known that to
decide whether a cubic graph is Hamiltonian is an NP-complete problem. The main idea of the talk is
to present a new approach to investigate hamiltonicity of graphs. Instead of graphs, we consider graphs
embedded into closed surfaces such that each face is bounded by a circuit (no repetitions of vertices are
allowed). Such an embedding is called polytopal or circular. By the cycle-double-cover conjecture every
2-connected graph admits a polytopal embedding. In an embedded graph the set of hamilton cycles split
into three classes: contractible, bounding but non-contractible cycles and non-separating cycles. We shall
investigate bounding and contractible hamilton cycles.

Assume first that the underlying surface is sphere. Due to the Jordan curve theorem a Hamilton cycle
𝐶 in a spherical map ℳ separates the surface into two disks bounded by 𝐶. Consider the two disjoint
sets of faces 𝒜 and ℬ separated by 𝐶. Then it is not difficult to see that the corresponding sets of vertices
𝒜* and ℬ* in the dual map induce two disjoint trees in ℳ*. The main idea consists in reversing the
above process. We shall try to identify a proper tree 𝑇 ⊆ ℳ (or a "one-face embedded"subgraph) in the
dual ℳ*, such that the topological closure of the faces in ℳ corresponding to the vertices of 𝑇 will form
a bordered surface with a connected boundary creating a bounding hamilton cycle in ℳ. We shall call
the tree 𝑇 a co-hamiltonian tree. Now, let ℳ be a polytopal map. In general, a bounding hamilton cycle
in ℳ will always define a bi-partition of the vertex set of the dual map. In order to understand what
sort of bi-partitions give a hamilton cycle in the original map, we introduce a useful concept of a 1-sided
subgraph which generalizes the concept of an embedded tree. Using this concept we were able to prove a
theorem stating that a map ℳ on a surface 𝑆 admits a bounding hamilton cycle if and only if the vertex
set of the dual ℳ* admits a partition into two subsets which induce one-sided subgraphs 𝐻 and 𝐾 such
that 𝛽(𝐻) + 𝛽(𝐾) = 𝜖(𝑆), where 𝛽(𝐻) and 𝛽(𝐾) are the Betti numbers and 𝜖(𝑆) is the Euler genus.
The hamilton cycle is contractible if and only if one of the subgraphs 𝐻, 𝐾 is a tree. The two subgraphs
satisfying the statement will be called co-hamiltonian subgraphs.

Under certain circumstances we can guarantee existence of a vertex-bipartition in the dual map into
two co-hamiltonian subgraphs, or we can prove that such a decomposition cannot exist. For instance,
we show that the truncation of a triangulation without a separating 3-cycle has a hamilton path and if
the number of triangles is congruent 2 mod 4 it has a bounding hamilton cycle. Also we shall deal with
truncations of triangulations with faces of size at most 7. We show that such map is either hamiltonian,
if the number of triangles is congruent 2 mod 4, or it has a hamilton path. This relates the result to a
conjecture by Barnette, recently proved by Kardoš, stating that cubic polyhedral graphs with faces of
size at most six are hamiltonian. Also we present a uniform approach to the problem of hamiltonicity of
Cayley graphs coming from groups of the form

⟨𝑥, 𝑦 | 𝑦2 = (𝑥𝑦)3 = 1, . . . ⟩,

investigated in papers by Glower, Youngs, Marušič, Kutnar and Malnič. A new result proves hamiltonicity,
or at least existence of a hamilton path in Cayley graphs generated by three involutions 𝑥, 𝑦 and 𝑧
satisfying the relations (𝑥𝑦)3 = (𝑦𝑧)3 = 1. These are particular instances of a folklore conjecture stating
that Cayley graphs are hamiltonian which solution does not seem to be in hand.
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A partial geometry with parameters (𝑠, 𝑡, 𝛼) consists of lines and points with the properties that (i)
each line has 𝑠 + 1 points and two distinct lines intersect in at most one point; (ii) each point is on 𝑡 + 1
lines and two distinct point occur on at most one line; and (iii) for each point 𝑝 that does not lie on a line
𝑙, there are exactly 𝛼 lines through 𝑝 that intersect 𝑙. The question whether there exists a (4, 27, 2) partial
geometry has tantalized researchers during the last couple of decades. Such a partial geometry would
have 275 points and 1540 lines and its point graph would be a (275, 112, 30, 56) strongly regular graph
(srg). There is a unique srg with the aforementioned parameters called the McLaughlin graph. In this
talk, a computer search for a (4, 27, 2) partial geometry starting from the McLaughlin graph is described.
After 270 core-years and more than one physical year, the computers claim that there is no such partial
geometry.
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A coherent configuration 𝒳 is characterized by the intersection numbers if every algebraic isomorphism
of this configuration to another one is induced by a combinatorial isomorphism; in this case, 𝒳 is said to
be separable. The importance of this notion is explained by the fact that if the coherent configuration
of a graph is separable, then the isomorphism of this graph to any other graph can be tested by the
Weisfeiler-Leman algorithm [4]. Besides, the separability of a distance-regular graph (or, more general, of
an association scheme) means in terms of [1], that the graph is uniquely determined by its parameters.

The index of an association scheme 𝒳 with 𝑛 points and 𝑚 relations of valency 1 is defined to be the
number 𝑛/𝑚. In [2,3], it was proved that every quasi-thin or pseudocyclic scheme 𝒳 is separable whenever
the index of 𝒳 is enough large in comparison with its maximal valency. It turns out that a similar result
(with much better bound) holds for the class of TI-schemes, which contains the most part of quasi-thin
schemes and all pseudocyclic schemes. Here, a TI-scheme can be thought as a combinatorial analog of
the coherent configuration of a transitive group 𝐺, the point stabilizer of which is a TI-subgroup of 𝐺.

As a byproduct of the main result, we prove that every association scheme of prime degree 𝑝 and
valency 𝑘 is schurian, whenever 𝑝 > 1 + 6𝑘(𝑘 − 1)2. This improves [3, Corollary 1.2], where the lower
bound for 𝑝 was 𝑂(𝑘5).
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On plateaued Boolean functions with the same spectrum support
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The Boolean function 𝑓 is a map F𝑛
2 → F2. The Walsh coefficient 𝑊𝑓 (𝑢) (also known as a spectral

coefficient), 𝑢 ∈ F𝑛
2 , is defined as the real-valued sum:

𝑊𝑓 (𝑢) =
∑︁
𝑥∈F𝑛

2

(−1)𝑓(𝑥)+<𝑥,𝑢>.

The plateaued Boolean function is the Boolean function whose Walsh coefficients take values {0,±2𝑐}
for some integer 𝑐. The given set of Walsh coefficients defines the Boolean function uniquely. If the
spectrum support of a plateaued Boolean function 𝑓 is known (i. e. the set of all vectors 𝑢 ∈ F𝑛

2 such
that 𝑊𝑓 (𝑢) ̸= 0) then only signs of all Walsh coefficients are known, so the plateaued Boolean function
is not defined uniquely. For the majority of spectrum supports 𝑆 including the full space F𝑛

2 , 𝑛 even,
𝑛 > 8, the number of plateaued functions with this spectrum support 𝑆 is unknown whereas for some
specific families the number of functions with such spectrum support was found (see for example [1]). We
present some such constructions of spectra and analyse their symmetries. Also we discuss the problem of
possible values of a rank (or an affine rank) for given spectrum supports of plateaued Boolean functions.
This problem earlier was studied in [2, 3] and recently the new upper bound for an arbitrary Boolean
function with the given cardinality of a spectrum support (also known as a sparsity) was obtained in [4].
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This is joint work with Ilia Ponomarenko

The Cartan scheme 𝒳 of a finite group 𝐺 with a (𝐵,𝑁)-pair is defined to be the coherent configuration
associated with the action of 𝐺 on the right cosets of the Cartan subgroup 𝐵 ∩ 𝑁 by the right
multiplications. It is proved that if 𝐺 is a simple group of Lie type, then asymptotically, the coherent
configuration 𝒳 is 2-separable, i.e. the array of 2-dimensional intersection numbers determines 𝒳 up
to isomorphism. It is also proved that in this case, the base number of 𝒳 equals 2. This enables us to
construct a polynomial-time algorithm for recognizing the Cartan schemes when the rank of 𝐺 and order
of the underlying field are sufficiently large. One of the key points in the proof of the main results is a
new sufficient condition for an arbitrary homogeneous coherent configuration to be 2-separable.
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Let 𝐺 be a graph. We regard the vertex space, which is the power set of the vertex set of 𝐺, as a
vector space over the binary field F2. For each vertex 𝑣 in 𝐺, let 𝑇𝑣 be the endomorphism of the vertex
space mapping the vertex 𝑣 to 𝑣 + N𝐺(𝑣), where N𝐺(𝑣) is the neighbourhood of 𝑣 in 𝐺, and mapping
the vertex 𝑤 to 𝑤 itself for all other vertices 𝑤 in 𝐺. In other words, 𝑇𝑣 can be written as id + N𝐺(𝑣)𝑣*,
where 𝑣* is the Kronecker function for 𝑣. Note that 𝑇𝑣 is a transvection if 𝑣 is not a loop vertex, namely
if 𝑣 /∈ N𝐺(𝑣), while 𝑇𝑣 is a projection if 𝑣 is a loop vertex, namely if 𝑣 ∈ N𝐺(𝑣).

In the case that 𝐺 is loopless, the set of all 𝑇𝑣’s, where 𝑣 runs over the vertex set of 𝐺, generates a
group, called the lit-only group of the graph 𝐺. We prove that the lit-only group is a semidirect product
of a classical group over F2 and an elementary abelian 2-group, and we give explicit description of the
orbits of the corresponding group action.

In the case that 𝐺 contains loops, the set of all 𝑇𝑣’s, which consists of possible transvections and some
projections, generates a monoid. We describe the orbits of this monoid action.
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In this lecture we attempt to establish some natural links between Algebraic and Extremal graph
theories (AGT and EGT, respectively).

We start by considering significant concepts in AGT such as coherent configurations and their
particular case, association schemes. There exists an efficient, polynomial time, algorithm which for a
given graph Γ, calculates the smallest coherent configuration 𝑊 (Γ) containing Γ as a union of basic
graphs. Nowadays, 𝑊 (Γ) is called the WL-closure of Γ (in honor of Weisfeiler and Leman). Recently, this
subject became more popular due to its links with the graph isomorphism problem.

We call a graph Γ coherent if it is a basic graph of 𝑊 (Γ). The coherent configuration 𝑊 (Γ) is called
Schurian if it coincides with the centralizer algebra of 𝐴𝑢𝑡(Γ), otherwise, 𝑊 (Γ) is non-Schurian.

Many extremal graphs have a rich automorphism group, in particular they are coherent and Schurian.
Moore graphs of valencies 3 and 7, as well as the cages which are incidence graphs of classical generalized
polygons are examples of such nice objects.

We will try to explain why in the framework of AGT the above mentioned classes of extremal graphs
should be naturally substituted by coherent and non-Schurian graphs appearing as a subject of EGT.

A few sporadic examples will be considered together with a family of regular bipartite graphs on
2(𝑞2 − 1) vertices, 𝑞 ≥ 3 is a prime power. These graphs have valency 𝑞, diameter 4, and a rank 6
WL-closure with valencies 1, 𝑞, 𝑞(𝑞 − 1), 𝑞(𝑞 − 2), 𝑞 − 1, 𝑞 − 2.
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This is joint work with Olga Valba

We consider ensembles of different regular graphs with size distributed in a certain known way. We find
the eigenvalue density of such ensembles by analyzing spectra of their adjacency matrices and Laplacian
matrices. Such subgraphs as path graphs, full binary and 𝑚-ary trees, star-trees are discussed.

The motivation is related to study of macromolecular solutions. It is known that sparse macro-
molecular clusters can be described by tree ensembles [1].
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Let 𝐺 be a subgroup of the symmetric group 𝑆𝑦𝑚(𝑋) and 𝐴 be a subset of 𝐺, where𝑋 = {1, 2, . . . , 𝑛}.
The subset 𝐴 is said to be intersecting if for any pair of permutations 𝜎, 𝜏 ∈ 𝐴 there is 𝑖 ∈ 𝑋 such that
𝜎(𝑖) = 𝜏(𝑖). A group 𝐺 has Erdös-Ko-Rado (EKR) property, if the size of any intersecting subset of 𝐺 is
bounded above by the size of a point stabilizer in 𝐺. The group 𝐺 has the strict EKR property if every
intersecting set of maximum size is the coset of the stabilizer of a point.

In some recent papers [1–3, 3], the Erdös-Ko-Rado property of 2−transitive groups and the groups
𝑃𝐺𝐿2(𝑞), 𝑃𝐺𝐿3(𝑞) are investigated. In this talk, we report our recent results on the Erdös-Ko-Rado
property of some different classes of finite groups.
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Let 𝐺 be a finite group. The cyclic graph Γ𝐺 is a simple graph with the vertex set 𝐺. Two elements
𝑥, 𝑦 ∈ 𝐺 are adjacent in the cyclic graph if and only if ⟨𝑥, 𝑦⟩ is cyclic [2]. Another graph is the power
graph 𝑃 (𝐺), that was introduced by Kelarev and Quinn in [4]. Two elements 𝑥, 𝑦 ∈ 𝐺 are adjacent in
the power graph if and only if one is a power of the other. In this paper we continue the work of [1] on
computing Laplacian eigenvalues of the power graph of the cyclic and dihedral groups and two unpublished
papers [2,3] in computing eigenvalues of the power graph and its main supergraph for some certain finite
groups. As considered application, the algebraic connectivity, the number of spanning trees and Laplacian
energy of these graphs were computed for the dihedral, semi-dihedral, cyclic and dicyclic groups.
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Assume that a finite group 𝐺 acts on a set Ω. An element 𝑥 ∈ Ω is called a regular point if |𝑥𝐺| = |𝐺|,
i.e. if the stabilizer of 𝑥 is trivial. Define the action of the group 𝐺 on Ω𝑘 by the rule

𝑔 : (𝑖1, . . . , 𝑖𝑘) ↦→ (𝑖1𝑔, . . . , 𝑖𝑘𝑔).

If 𝐺 acts faithfully and transitively on Ω, then the minimal number 𝑘 such that the set Ω𝑘 contains a
𝐺-regular point is called the base size of 𝐺 and is denoted by 𝑏(𝐺). For a positive integer 𝑚 the number of
𝐺-regular orbits on Ω𝑚 is denoted by 𝑅𝑒𝑔(𝐺,𝑚) (this number equals 0 if𝑚 < 𝑏(𝐺)). If 𝐻 is a subgroup of
𝐺 and 𝐺 acts by the right multiplication on the set Ω of right cosets of 𝐻 then 𝐺/𝐻𝐺 acts faithfully and
transitively on the set Ω. (Here 𝐻𝐺 = ∩𝑔∈𝐺𝐻

𝑔.) In this case, we denote 𝑏(𝐺/𝐻𝐺) and 𝑅𝑒𝑔(𝐺/𝐻𝐺,𝑚)
by 𝑏𝐻(𝐺) and 𝑅𝑒𝑔𝐻(𝐺,𝑚) respectively.

Thus 𝑏𝐻(𝐺) is the minimal number 𝑘 such that there exist elements 𝑥1, . . . , 𝑥𝑘 ∈ 𝐺 for which 𝐻𝑥1 ∩
. . . ∩𝐻𝑥𝑘 = 𝐻𝐺.

Consider the problem 17.41 from ”Kourovka notebook” [1]:
Let 𝐻 be a solvable subgroup of finite group 𝐺 and 𝐺 does not contain nontrivial normal solvable

subgroups. Are there always exist five subgroups conjugated with 𝐻 such that their intersection is trivial?
The problem is reduced to the case when 𝐺 is almost simple in [2]. Specifically, it is proved that if for

each almost simple group 𝐺 and solvable subgroup 𝐻 of 𝐺 condition 𝑅𝑒𝑔𝐻(𝐺, 5) ≥ 5 holds then for each
finite nonsolvable group 𝐺 and maximal solvable subgroup 𝐻 of 𝐺 condition 𝑅𝑒𝑔𝐻(𝐺, 5) ≥ 5 holds.

Let 𝑝 be a prime number and 𝑞 = 𝑝𝑡. A cyclic irreducible subgroup 𝑆𝑖𝑛𝑛(𝑞) of 𝐺𝐿𝑛(𝑞) of order 𝑞𝑛 − 1
is called a Singer cycle. If 𝐻 is a cycle subgroup of 𝐺𝑈𝑛(𝑞) and |𝐻| = 𝑞𝑛 − (−1)𝑛 we also call it a Singer
cycle and denote by 𝑆𝑖𝑛𝑛(𝑞).

By 𝜙𝑛 we denote an automorphism of 𝑆𝑖𝑛𝑛(𝑞) such that 𝜙𝑛 : 𝑔 ↦→ 𝑔𝑞 if 𝐺 = 𝐺𝐿𝑛(𝑞) and 𝜙𝑖 : 𝑔 ↦→ 𝑔𝑞
2

if 𝐺 = 𝐺𝑈𝑛(𝑞).
We have proved the following

Theorem. Let 𝐺 be isomorphic to 𝐺𝐿𝑛(𝑞) or 𝐺𝑈𝑛(𝑞) and 𝐻 be a subgroup of 𝐺 such that 𝐻 is block

diagonal with blocks isomorphic to 𝑆𝑖𝑛𝑛𝑖(𝑞) o ⟨𝜙𝑛𝑖⟩; 𝑖 = 1, . . . , 𝑘;
∑︀𝑘

𝑖=1 𝑛𝑖 = 𝑛. Then 𝑏𝐻(𝐺) ≤ 4.
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Let 𝐺 be a finite group and 𝜋 a set of primes. A group 𝐺 having a normal 𝜋-Hall subgroup is called
𝜋-closed. We consider groups 𝐺 such that 𝐺 is not 𝜋-closed and all maximal subgroups of 𝐺 are 𝜋-closed,
i.e. 𝐺 is a minimal non-𝜋-closed group.

Theorem 1 [1, Theorem 1′]. If 𝐺 is a minimal non-𝜋-closed group then either 𝐺/Φ(𝐺) is a simple
non-abelian group or 𝐺 is a Schmidt group.

Thus, the study of the minimal non-𝜋-closed groups reduces practically to the case of the simple
non-abelian groups. Further we use the following notation. As usual 𝜋(𝑛) is the set of all primes dividing
a natural 𝑛. If 𝑞 is a prime power then 𝑆(𝑞) := {𝑞0 ∈ N | 𝑞 = 𝑞𝑟0 for a some prime 𝑟}. If 𝑃 (𝑥) is a integral
polynomial on 𝑥 then 𝜋0(𝑃 (𝑞)) := 𝜋(𝑃 (𝑞)) ∖ ∪𝑞0∈𝑆(𝑞)𝜋(𝑃 (𝑞0)).

Theorem 2 [2, 3]. Let 𝐺 be a finite simple non-abelian group different from 𝑃𝑆𝐿𝑟(𝑞) and 𝑃𝑆𝑈𝑟(𝑞) with
an odd prime 𝑟 and 𝐸8(𝑞) (everywhere 𝑞 is a prime power), and 𝜋 ⊆ 𝜋(𝐺). The following conditions are
equivalent:

(𝐴) 𝐺 is a minimal non-𝜋-closed group;
(𝐵) 2 ̸∈ 𝜋, 𝜋 ̸= ∅ and one of the following conditions holds:

(1) 𝐺 ∼= 𝐴𝑟 where 𝑟 ≥ 5 is a prime different from 11, 23 and (𝑞𝑛 − 1)/(𝑞 − 1) where 𝑞 is a prime
powers and 𝑛 ∈ N, and 𝜋 = {𝑟};

(2) 𝐺 ∼= 𝑃𝑆𝐿2(𝑞), 𝑞 > 5, 𝜋(𝑞) = {𝑝}, and one of the following conditions holds:
(2𝑎) 𝑞 = 𝑝 and either 𝜋 ⊆ 𝜋(𝑝 + 1) ∖ {3, 5} or 𝑝 ∈ 𝜋 ⊆ 𝜋(𝑝(𝑝2 − 1)) ∖ {3, 5};
(2𝑏) 𝑞 = 𝑝𝑚 > 𝑝, 𝜋 ⊆ 𝜋0(𝑞 + 1) ∖ {5}, and 3 ̸∈ 𝜋 if 𝑝 > 2;

(3) 𝐺 ∼= 𝑆𝑧(𝑞) (𝑞 = 22𝑛+1 ≥ 8), 𝜋 ⊆ 𝜋0(𝑞2 + 1) for non-prime 2𝑛 + 1 and 𝜋 ⊆ 𝜋(𝑞2 + 1) for prime
2𝑛 + 1;

(4) 𝐺 ∼= 2𝐺2(𝑞) (𝑞 = 32𝑛+1 ≥ 27), 𝜋 ⊆ 𝜋0(𝑞2 − 𝑞 + 1) for non-prime 2𝑛 + 1 and 𝜋 ⊆ 𝜋(𝑞2 − 𝑞 + 1)
for prime 2𝑛 + 1;

(5) 𝐺 ∼= 3𝐷4(𝑞) and 𝜋 ⊆ 𝜋0(𝑞4 − 𝑞2 + 1);
(6) 𝐺 ∼= 2𝐹4(𝑞) (𝑞 = 22𝑛+1 ≥ 8) and 𝜋 ⊆ 𝜋0(𝑞4 − 𝑞2 + 1);
(7) 𝐺 is one of the sporadic groups 𝑀23, 𝐽1, 𝐽4, 𝐿𝑦, 𝐹 𝑖′24, 𝐹2 and 𝜋 is as in [2, Theorem 2].

Thus, for the complete description of the all pairs (𝐺, 𝜋) where 𝐺 is a simple minimal non-𝜋-closed
group it remains to consider only three series of groups 𝐺: 𝑃𝑆𝐿𝑟(𝑞) and 𝑃𝑆𝑈𝑟(𝑞) with an odd prime 𝑟
and 𝐸8(𝑞).

The work is supported by the Complex Program of UB RAS (project 15-16-1-5).
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A connected signed graph with 𝑛 vertices is said to be unicyclic if its number of edges is 𝑛. The energy
of a signed graph 𝑆 of order 𝑛 with eigenvalues 𝑥1, 𝑥2, · · · , 𝑥𝑛 is defined as 𝐸(𝑆) =

∑︀𝑛
𝑗=1 |𝑥𝑗 |. In this

paper, we obtain integral representations for the energy of a signed graph. It is shown that even and
odd coefficients of the characteristic polynomial of a unicyclic signed graph respectively alternate in sign.
As an application of integral representation, energy of signed graphs obtained from a unicyclic graph
is compared. As a consequence of these results, we characterize unicyclic signed graphs with minimal
energy.
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Halved cube 1
2𝑄𝑛 – is a graph, whose vertex set is a set of all binary words of length 𝑛 with even (odd)

weight; two vertices are adjacent if Hamming distance between them equals 2. Halved cube graphs were
studied in several papers [1, 2]. We consider hamiltonian cycles in halved cube graphs, in particularly,
completability of these cycles. Let

𝐶1/2 = 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣2𝑛−1−1, 𝑣2𝑛−1

be a hamiltonian cycle in 1
2𝑄𝑛. We call this cycle completable if there are binary words 𝑢1, 𝑢2, . . . 𝑢2𝑛−1

of length 𝑛 such that cycle

𝐶 = 𝑣1,𝑢1, 𝑣2,𝑢2, 𝑣3,𝑢3, 𝑣4, . . . , 𝑣2𝑛−1 ,𝑢2𝑛−1

is hamiltonian in 𝑄𝑛.
For any 𝑛 ≥ 4 we prove existence of hamiltonian cycle in 1

2𝑄𝑛, which is not completable.

For hamiltonian cycle 𝐶1/2 in 1
2𝑄𝑛 we create auxiliary graph 𝒢

(︀
𝐶1/2

)︀
. Without loss of generality we

assume, that 𝐶1/2 is a cycle, containing all binary words of length 𝑛 with odd weight.
Vertex set of 𝒢(𝐶1/2) – all binary words of length 𝑛 with even weight. We call vertex 𝑥 ∈ 𝑉 (𝒢(𝐶1/2))

closest vertex to edge (𝑢, 𝑣) of cycle 𝐶1/2, if 𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑥) + 𝑑(𝑥, 𝑣). Obviously, for any edge of 𝐶1/2

there are exactly two closest vertices. Then, for every edge 𝑒 of 𝐶1/2, we add edge (𝑣, 𝑢) to graph 𝒢,
where 𝑢 and 𝑣 are closest vertices to 𝑒.

Necessary and sufficient condition of cycle completability is stated in terms of auxiliary graph 𝒢
(︀
𝐶1/2

)︀
:

Theorem. Hamiltonian cycle 𝐶1/2 in 1
2𝑄𝑛 is completable iff there is no trees among connected

components of 𝒢(𝐶1/2).
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Remind that the group 𝐺 is called Shunkov, if for any its finite subgroup 𝐾, every subgroup of the
factor group 𝑁𝐺(𝐾)/𝐾, generated by two conjugate elements of prime order, is finite (V. D. Mazurov).

The class of periodic Shunkov groups is large and includes, for instance, the classes of 2-groups and
binary finite groups. The class of locally graded groups is extremely large. The following new author’s
theorem holds.

Theorem. Let 𝐺 be a non-abelian periodic Shunkov group or a non-abelian locally graded group. Then 𝐺
satisfies the minimal condition for non-abelian non-complemented subgroups iff it is a Chernikov group
or an infinite periodic solvable group with complemented non-abelian subgroups.

The known Olshanskiy’s Examples of infinite simple groups with abelian proper subgroups (see, for
instance, [1]) show that in this theorem the condition: “𝐺 is periodic Shunkov or locally graded” is
essential. Note: the Shunkov groups with the minimal condition for abelian noncomplemented subgroups
are completely described by N. S. Chernikov [2].
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This is joint work with Andrey Vasil’ev

An algebraic structure K = ⟨K,+, ∘⟩ is called a (right) near-field, if K+ = ⟨K,+⟩ is a group, K× =
⟨K∖{0}, ∘⟩ is a group, (𝑥 + 𝑦) ∘ 𝑧 = 𝑥 ∘ 𝑧 + 𝑦 ∘ 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ K, and 𝑥 ∘ 0 = 0 for all 𝑥 ∈ K. Finite
near-fields can be constructed via finite fields except for a finite number of near-fields [1]. The first ones
are called Dickson near-fields, the last ones are Zassenhaus near-fields.

Let K be a finite near-field and 𝐾 be a subgroup of the group K×, ℛ𝐾 = {𝑅𝐾(𝑎) | 𝑎 ∈ K}, where
𝑅𝐾(𝑎) = {(𝑥, 𝑦) ∈ K2 | 𝑥− 𝑦 ∈ 𝐾 ∘ 𝑎}. The pair (K,ℛ𝐾) is called cyclotomic scheme over the near-field
K with the base group 𝐾. Cyclotomic schemes over finite fields were defined by Delsarte for the algebraic
theory of codes [2], cyclotomic schemes over finite near-fields were introduced in [4].

The automorphism group of the cyclotomic scheme 𝒞 = (K,ℛ𝐾) can be defined as the automorphism
group of its partition ℛ𝐾 , namely, Aut(𝒞) = {𝑔 ∈ Sym(K) | 𝑅𝑔 = 𝑅,𝑅 ∈ ℛ𝐾}. Observe that Aut(𝒞) =
Sym(K) if the base group of the cyclotomic scheme 𝒞 equals K×.

If F is the finite field of order 𝑞, 𝐾 is a proper subgroup of F×, then the automorphism group of the
cyclotomic scheme 𝒞 = (K,ℛ𝐾) is a subgroup of AΓL(1, 𝑞) = {𝑥 ↦→ 𝑥𝜎𝑏 + 𝑐 | 𝑥 ∈ F, 𝑏 ∈ F×, 𝑐 ∈ F+, 𝜎 ∈
Aut(F)} [3]. The same result was achieved in [4] for cyclotomic schemes over Dickson near-fields with some
restrictions on the orders of their base groups. Here we complete the description of the automorphism
groups of cyclotomic schemes over finite near-fields.

Theorem. Let K be a finite near-field of order 𝑞, 𝐾 a proper subgroup of K×, and 𝒞 = (K,ℛ𝐾) the
corresponding cyclotomic scheme. Then Aut(𝒞) ≤ AΓL(1, 𝑞) except for a finite number of exceptional
schemes. If 𝒞 is one of the exceptions, then the subgroup 𝐻 of Sym(K) with Aut(𝒞) ≤ 𝐻 is determined.
In particular, if the base group 𝐾 is solvable, then so is Aut(𝒞).

It is worth mentioning that one of the key tools of our proof is the recent classification of 3
2 -transitive

permutation groups [5].
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Let 𝐹𝐿𝜈(𝐾) be the finitary linear group where 𝐾 is a ring with the unit, 𝜈 is a linearly ordered set.
𝐹𝐿𝜈(𝐾) is investigated in [1, 2]. In particular the finitary unitriangular group 𝑈𝑇𝜈(𝐾) is studied in [2].

We study periodic subgroups of the finitary linear group 𝐹𝐿𝜈(𝐾) in the case where 𝐾 is an integral
domain, 𝜈 is a countable set.

The main result of this paper is the theorem.

Theorem. Let 𝐺 be a periodic subgroup of 𝐹𝐿𝜈(𝐾), 𝐾 be an integral domain, 𝜈 be a countable set. Then
𝐺 is a (locally nilpotent)-by-countable and locally finite group.
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Suppose that Γ — antipodal distance-regular graph of diameter 3 with 𝜆 = 𝜇, in which the neighbour-
hood of each vertex is strongly regular with parameters (𝑣′, 𝑘′, 𝜆′, 𝜇′). In this case Γ has the intersection

array {𝑘, 𝜇(𝑟−1), 1; 1, 𝜇, 𝑘}, and the spectrum 𝑘1,
√
𝑘
𝑓
,−1𝑘,−

√
𝑘
𝑓
, where 𝑘 = 𝑣′, 𝜇 = (𝑣′−𝑘′−1)/(𝑟−1)

and 𝑓 = (𝑘+1)(𝑟−1)/2. Further, the number (𝑣′+1)(𝑟−1) is even. Makhnev A.A. and Samoilenko M.S. [1]
selected parameters of strongly regular graphs with no more than 1000 vertices, satisfying these conditions.
In this paper automorphisms of distance-regular graph Γ with intersection array {121, 90, 1; 1, 30, 121}
and of strongly regular graph with parameters (121, 30, 11, 6) are investigated.
Theorem 1. Let Γ be strongly regular graph with parameters (121, 30, 11, 6), 𝐺 = Aut(Γ), 𝑔 element of
prime order 𝑝 of 𝐺 and Ω = Fix(𝑔). Then 𝜋(𝐺) ⊆ {2, 3, 5, 7, 11} and one of the following holds:

(1) Ω is empty graph and 𝑝 = 11;
(2) Ω is 𝑛-clique, either 𝑛 = 1, 𝑝 = 3, 5, or 𝑛 = 3𝑡 + 1, 𝑝 = 3 or 𝑛 = 2𝑡 + 1 and 𝑝 = 2;
(3) Ω is 𝑚-coclique, either 𝑚 = 3𝑡 + 1, 𝑝 = 3 or 𝑚 = 2𝑡 + 1 and 𝑝 = 2;
(4) Ω contains an edge and is the union of 𝑠 isolated cliques, either 𝑝 = 3, the number of vertices in

maximal clique from Ω is congruent to 1 by module 3 and 𝑠 is congruent to 1 by module 3, or 𝑝 = 2, the
number of vertices in maximal clique from Ω is odd and 𝑠 is odd;

(5) if Ω contains [𝑎] for some vertex 𝑎 ∈ Ω, then 𝑝 ≤ 3 and in the case |Ω| = 31 we have 𝑝 = 3;
(6) Ω contains geodesic 2-way, 𝑝 ≤ 7 and in the case 𝑝 = 7 subgraph Ω is strongly regular with

parameters (16, 9, 4, 6).
Theorem 2. Let Γ be a distance-regular graph Γ with intersection array {121, 90, 1; 1, 30, 121}, 𝐺 =
Aut(Γ), 𝑔 be an element of prime order 𝑝 of 𝐺 and Ω = Fix(𝑔) contains 𝑠 vertices in 𝑡 antipodal classes.
Then 𝜋(𝐺) ⊆ {2, 3, 5, 7, 11, 13, 23, 61} and one of the following holds:

(1) Ω is empty graph, 𝑝 = 2, 61;
(2) Ω is the antipodal class of Γ, 𝑝 = 11;
(3) Ω is a 𝑡-clique, 𝑝 = 3 and 𝑡 = 2, 5, 8, 11;
(4) 𝑝 = 23, Ω is a distance-regular graph with intersection array {29, 21, 1; 1, 7, 29}, or 𝑝 = 13 and Ω

is a distance-regular graph with intersection array {17, 12, 1; 1, 4, 17};
(5) 𝑝 = 7, 𝑡 = 10, 17, 24 and in the case 𝑡 = 10 subgraph Ω is a distance-regular graph with intersection

array {9, 6, 1; 1, 2, 9};
(6) 𝑝 = 5, 𝑡 = 2, 7, 12, 17, 22, 27 and in the case 𝑡 = 7 subgraph Ω is the union of four isolated 7-cliques;
(7) 𝑝 = 3, 𝑠 = 4, 𝑡 = 3𝑙 + 2, 𝑙 ≤ 9 and in the case 𝑡 = 5 subgraph Ω is the union of four isolated

5-cliques;
(8) 𝑝 = 2, 𝑠 > 0, any vertex from Γ − Ω is adjacent with even number vertices in Ω and either 𝑠 = 2,

𝑡 ≤ 60, or 𝑠 = 4, 𝑡 ≤ 30.
Corollary. Let Γ be a vertex-symmetric distance-regular graph Γ with intersection array {121, 90, 1; 1,
30, 121}. Then Γ is the arc-transitive graph with the socle of automorphism group isomorphic to 𝑍2 ×
𝐿2(121).

This work was supported by the grant of Russian Science Foundation, project no. 14-11-00061.
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Random graphs constitute a big area in the modern graph theory; see, e.g., [1]. The Erdős–Rényi
model (fixing the number 𝑚(𝑛) of the edges) and the Gilbert model (fixing the probability 𝜌(𝑛) of an
edge) are standard models of the random graph. One of the main directions of the study of random graphs
concerns threshold functions for different graph properties. Threshold functions are also considered for
properties in particular classes of graphs, like bipartite graphs.

In [2], a combinatorial problem on words was reduced to finding the threshold function for the
edge connectedness of random bipartite graphs in the Erdős–Rényi model. This function was found
in [2] under some restrictions on the size 𝑝, 𝑞 of the parts of the graph (we assume 𝑝 ≥ 𝑞). If one
part is much smaller than the other (namely, 𝑞 = 𝑜( 𝑝

ln 𝑝 )), then 𝜑(𝑝, 𝑞) =
√︀

𝑝𝑞(ln 𝑞 + 𝑂(1)) is the

threshold function; if the sizes of the parts are close (𝑞 = 𝑜( 𝑝
ln 𝑝 )), then the threshold function is

𝑓(𝑝, 𝑞) = 𝑝𝑞
𝑝+𝑞−2

(︁
ln 𝑝𝑞

𝑝+𝑞−2 + ln ln 𝑝𝑞
𝑝+𝑞−2 + 𝑂(1)

)︁
.

The above results leave a range of growth rates of 𝑞 uncovered. We analyze the behaviour of random
bipartite graphs in this range. Our contribution is as follows.

1. The problem of searching the threshold function for the edge connectedness of random bipartite
graphs in the Erdős–Rényi model is reduced to the same problem in the Gilbert model and vice

versa. In particular, 𝑓(𝑝,𝑞)
𝑝𝑞 and 𝜑(𝑝,𝑞)

𝑝𝑞 are thresholds for the connectedness of random bipartite graphs
in the Gilbert model in the same range of growth rates of 𝑞.

2. If 𝑞 = 𝛼 𝑝
ln 𝑝 + 𝑜(𝛼 𝑝

ln 𝑝 ), 0 < 𝛼 < ln ln 𝑝, then both 𝜑(𝑝, 𝑞) and 𝑓(𝑝, 𝑞) are strictly smaller than the
threshold function; the same result applies for the Gilbert model.

3. If 𝛼 < 1, then 𝜑(𝑝, 𝑞) > 𝑓(𝑝, 𝑞); replacing 𝑂(1) in 𝜑(𝑝, 𝑞) with any 𝑜(ln 𝑞) function does not give the
threshold function: the expected number of tree components with a single vertex in a smaller part
and ( 1√

𝛼
− 𝛼) ln 𝑞 vertices in a bigger part remains non-zero.

4. If 𝛼 > 1, then 𝑓(𝑝, 𝑞) > 𝜑(𝑝, 𝑞); replacing 𝑂(1) in 𝑓(𝑝, 𝑞) with any 𝑂( (ln ln 𝑞)2

ln ln ln ln ln 𝑞 ) function does not
give the threshold function: the expected number of tree components with a single vertex in a smaller
part and 2 ln ln 𝑞 vertices in a bigger part remains non-zero. Moreover, if 𝛼 = 𝑂(1), replacing 𝑂(1)
in 𝑓(𝑝, 𝑞) with any 𝑂( ln 𝑞

ln ln 𝑞 ) function does not give the threshold function: the expected number of

tree components with a single vertex in a smaller part and ln 𝑝
ln ln 𝑝 vertices in a bigger part remains

non-zero.

5. If 𝛼 < 1, both symbolic and numerical computations support the following conjecture: the threshold
function grows as 𝛽

√
𝑝𝑞 ln 𝑞, where 𝛽 > 1 depends on 𝛼 and is bounded.
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Let 𝒥𝑛, 𝑑=𝑘, 𝒥𝑛, 𝑑≥𝑘, 𝒥 *
𝑛, 𝑑≥𝑘 be the following classes of labeled 𝑛-vertex ordinary graphs: graphs of

the diameter 𝑘, connected graphs of the diameter at least 𝑘, and graphs (not necessarily connected)
with a shortest path of the length at least 𝑘, respectively. It is well known that almost all graphs have
diameter 2. Consequently, the number of labeled 𝑛-vertex graphs of the diameter 2 is equal to the

number 2(𝑛
2) of all 𝑛-vertex graphs asymptotically. This result was probably first established in [1]. For

the number of graphs of a fixed diameter 𝑘 ≥ 3, the asymptotic formula |𝒥𝑛, 𝑑=𝑘| = 2(𝑛
2)(6 · 2−𝑘 + 𝑜(1))𝑛

as 𝑛 → ∞ was obtained in [2]. The same formula for the number |𝒥𝑛, 𝑑≥𝑘| of connected graphs of the
diameter at least 𝑘 was established in [3]. However, this formula does not give an asymptotically exact
value of the number of graphs in the classes 𝒥𝑛, 𝑑=𝑘, 𝒥𝑛, 𝑑≥𝑘 and error estimates in such asymptotic
approximation. For any 𝑘 ≥ 3, the asymptotics of the number |𝒥𝑛, 𝑑=𝑘| of graphs with the fixed diameter
𝑘 was found in [4] with an approximation error 𝑟(𝑛) satisfying the following estimates for all large enough

𝑛: −𝑐
(︁

9
10

)︁𝑛−𝑘

≤ 𝑟(𝑛) = 𝑂
(︁
𝑘2(𝑛−𝑘−1)4

(︁
11
12

)︁𝑛−𝑘−1)︁
, where 𝑐 > 0 is a constant independent of 𝑛−𝑘−1.

It is obvious that 𝒥𝑛, 𝑑=𝑘 ⊆ 𝒥𝑛, 𝑑≥𝑘 ⊆ 𝒥 *
𝑛, 𝑑≥𝑘 and all inclusions are strict for 𝑛 ≥ 𝑘+ 2. In the present

paper, the asymptotics of the number |𝒥 *
𝑛, 𝑑≥𝑘| is found. As a consequence, it is proved that these three

classes of graphs have the same asymptotic cardinality. Used methods of graph theory and method of
mathematical induction led to a fairly simple proof of calculating the asymptotics of the number |𝒥𝑛, 𝑑=𝑘|.
Theorem. Let 𝑘 ≥ 3 and 0 < 𝜀 < 1. Then there is a constant 𝑐𝑘 > 0 independent of 𝑛 such that for any
𝑛 ∈ N the following inequalities hold:

2(𝑛
2)𝜉𝑛,𝑘 (1 − 𝜀𝑛,𝑘) ≤ |𝒥𝑛, 𝑑=𝑘| ≤ |𝒥𝑛, 𝑑≥𝑘| ≤ |𝒥 *

𝑛, 𝑑≥𝑘| ≤ 2(𝑛
2)𝜉𝑛,𝑘 (1 + 𝜀𝑛,𝑘),

where 𝜉𝑛,𝑘 = 𝑞𝑘 (𝑛)𝑘−1

(︁ 3

2𝑘−1

)︁𝑛−𝑘+1

, 𝜀𝑛,𝑘 = 𝑐𝑘

(︁5 + 𝜖

6

)︁𝑛

= 𝑜(1),

𝑞𝑘 =
1

2
(𝑘 − 2) 2−(𝑘−1

2 ), (𝑛)𝑘 = 𝑛(𝑛− 1) · · · (𝑛− 𝑘 + 1).

Note that the asymptotic approximation for the number |𝒥𝑛, 𝑑=𝑘| obtained in our theorem is more precise
than in [4] if 𝜀 ∈ (0, 2

5 ). Furthermore, the constant 𝑐𝑘 is indicated explicitly.
Corollary 1. Let 𝑘 ≥ 3. Then the following asymptotic equalities hold:

|𝒥𝑛, 𝑑=𝑘| ∼ |𝒥𝑛, 𝑑≥𝑘| ∼ |𝒥 *
𝑛, 𝑑≥𝑘| ∼ 2(𝑛

2)𝜉𝑛,𝑘.

Corollary 2. Almost all graphs of a fixed diameter 𝑘 ≥ 3 have a unique pair of diametrical vertices, but
almost all graphs of the diameter 2 have more than one pair of such vertices.

Research is supported by the Russian Foundation for Basic Research (project №14–01–00507).
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This is joint work with A. R. Ashrafi and A. Bretto

Let 𝐺 be a finite group with identity element 1 and 𝐼𝑛𝑣 be the set of all involutions in 𝐺. The
involution 𝐺−graph 𝜑 = 𝜑(𝐺, 𝐼𝑛𝑣) is a particular 𝐺−graph introduced by Alain Bretto 2005. The set of
vertices of this graph contains the cycles of (𝑠)𝑥 = (𝑥, 𝑠𝑥, 𝑠2𝑥, · · · , 𝑠𝑜(𝑠)−1𝑥), where 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑇𝑠, a set
of right transversal of 𝑠 in 𝐺. Two vertices (𝑠1)𝑥 and (𝑠2)𝑦 are adjacent in 𝜑 when the intersection set of
their supports has more than one element. The 𝐺−graphs have many properties similar to Cayley graphs
but they are more general than the Cayley graphs and most of the well-known graphs are 𝐺−graphs. The
aim of this work is obtaining the structures and the automorphism groups of the involution 𝐺−graphs for
some classes of finite groups and some simple groups generated by their involutions and then comparing
them with the automorphism groups of the involution Cayley graphs. To do our computational work we
use GAP and the finite representation of the groups. Some of the finite groups which we will consider
have the representations as follows:

𝐷2𝑛 = ⟨𝑎, 𝑏|𝑎𝑛 = 𝑏2 = 1, 𝑏−1𝑎𝑏 = 𝑎−1⟩,
𝑉8𝑛 = ⟨𝑎, 𝑏|𝑎2𝑛 = 𝑏4 = 1, 𝑎𝑏𝑎 = 𝑏−1, 𝑎𝑏−1𝑎 = 𝑏⟩,

𝑆𝐷8𝑛 = ⟨𝑎, 𝑏|𝑎4𝑛 = 𝑏2 = 1, 𝑏𝑎𝑏 = 𝑎2𝑛−1⟩,
𝑇4𝑛 = ⟨𝑎, 𝑏|𝑎2𝑛 = 1, 𝑎𝑛 = 𝑏2, 𝑏−1𝑎𝑏 = 𝑎−1⟩,
𝑈2𝑛𝑚 = ⟨𝑎, 𝑏|𝑎2𝑛 = 𝑏𝑚 = 1, 𝑎𝑏𝑎−1 = 𝑏−1⟩.
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All graphs considered in this paper are simple and finite. Also, all groups are finite and non-abelian.
There are a number of constructions of graphs from groups or semi-groups in the literature. Let 𝐺 be
a non-abelian group with center 𝑍(𝐺). The non-commuting graph (NC-graph) Γ(𝐺) is a simple and
undirected graph with the vertex set 𝐺 ∖ 𝑍(𝐺) and two vertices 𝑥, 𝑦 ∈ 𝐺 ∖ 𝑍(𝐺) are adjacent whenever
𝑥𝑦 ̸= 𝑦𝑥. The concept of NC-graphs was first considered by Paul Erdős to answer a question on the size of
the cliques of a graph in 1975. For background materials about non-commuting graphs, we encourage the
reader to see reference [1]. The non-commuting graph Γ(𝐺) of group 𝐺 was first considered by Paul Erdős
to answer a question on the size of the cliques of a graph in 1975, see [2]. In this article, we prove that
regular non-commuting graphs are Eulerian. We also prove that there is no 2𝑠𝑞−regular non-commuting
graph, where 𝑞 is a prime number greater than 2.

An integral graph is a graph with integral spectrum.

Theorem. If Γ(𝐺) is 𝑘−regular integral non-commuting graph where 𝑘 ≤ 16, then 𝑘 = 4 and 𝐺 ∼=
𝐷8, 𝑄8 or 𝑘 = 8 and 𝐺 ∼= Z2 × 𝐷8,Z2 × 𝑄8, 𝑆𝑈(2),𝑀16,Z4 n Z4,Z4 n Z2 × Z2 or 𝑘 = 16 and 𝐺 ∼=
𝑆𝑚𝑎𝑙𝑙𝐺𝑟𝑜𝑢𝑝(32, 𝑖), where

𝑖 ∈ {2, 4, 5, 12, 17, 22, 23, 24, 25, 26, 37, 38, 46, 47, 48, 49, 50}.
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A graph 𝐺 = (𝑉,𝐸) is (𝑎, 𝑏)-partitionable for positive integers 𝑎, 𝑏 if its vertex set can be partitioned to
subsets 𝑉1 and 𝑉2 such that induced subgraphs 𝐺[𝑉1] and 𝐺[𝑉2] do not contain paths of length exceeding
𝑎− 1 and 𝑏− 1 respectively. Mihok [4] showed that for any constants 𝑎 and 𝑏 their exists series of planar
graphs which are not (𝑎, 𝑏)-partitionable. However, all examples of graphs constructed by Mihok contain
many 3-cycles. On the other hand, for planar graphs with sufficiently large girth it was established in
series of papers that they are (𝑎, 𝑏)-partitionable for small 𝑎 and 𝑏. For example, in [2] it was proved
that any planar graph with girth at least 7 is (2,2)-partitionable. Therefore, a question arises: what is
the smallest integer 𝑔 such that there exist positive integers 𝑎, 𝑏 with the property that any planar graph
with girth at least 𝑔 is (𝑎, 𝑏)-partitionable?

For planar graphs with girth at least 6, it was recently proved that they are (5,5)-partitionable [3] and
that the vertex set of any such a graph can be partitioned to subsets 𝑉1 and 𝑉2 such that both subgraphs
𝐺[𝑉1] and 𝐺[𝑉2] are linear forests whose paths have length at most 14 [1]. Another important result in [1]
is a construction of series of planar graphs with girth 4 which are not (𝑎, 𝑏)-partitionable for any given 𝑎
and 𝑏. So it follows by the results in [1, 3], that 5 ≤ 𝑔 ≤ 6.

In this paper we make the final step in determining 𝑔 by proving that any planar graph with girth at
least 5 is (7,7)-partitionable. Hence we establish that 𝑔 = 5. Furthermore, we prove the list version of our
main result: if every vertex 𝑣 of a graph is given a list 𝐿(𝑣) of two colours then we can colour the graph
vertices from their list in such a way that each monochromatic component is a tree of diameter at most
6.

The work is supported by RFBR (projects 15-01-00976 and 15-01-05867).
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For a graph 𝐺 = (𝑉,𝐸), the open neighborhood of a vertex 𝑣 ∈ 𝑉 is 𝑁(𝑣) = {𝑢 ∈ 𝐺 | 𝑢𝑣 ∈ 𝐸(𝐺)} and
the closed neighborhood is 𝑁 [𝑣] = 𝑁(𝑣)∪{𝑣}. A set 𝑆 ⊆ 𝑉 is a dominating set if each vertex in 𝑉 (𝐺)∖𝑆
is adjacent to at least one vertex of 𝑆. Equivalently, 𝑆 is a dominating set of G if |𝑁(𝑣)∩𝐷| ≥ 1 for each
𝑣 ∈ 𝑉 . Several multiple counterparts of such sets are known. In particular, 𝐷 is said to be a 𝑘-dominating
set, if every vertex 𝑣 not in 𝐷 satisfies |𝑁(𝑣) ∩𝐷| ≥ 𝑘 or a 𝑘-tuple dominating set if |𝑁 [𝑣] ∩𝐷| ≥ 𝑘 for
each 𝑣 ∈ 𝑉 , or a 𝑘-tuple total dominating set if every vertex has at least 𝑘 neighbours in 𝐷 and etc. We
believe all of these concepts can be represented by a comprehensive definition. Therefore we introduce a
new domination parameter as a generalization of multiple domination parameters and we improve some
results of this topic.
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A Boolean function 𝐹 : F𝑛
2 → F𝑛

2 can be uniquely represented in algebraic normal form (ANF) as a
𝑛-variable polynomial with coefficients in F𝑛

2 . The algebraic degree of 𝐹 is degree of its ANF. A function
𝐹 is affine (linear) if its algebraic degree is not more than 1 (additionally, 𝐹 (0) = 0); and quadratic
if its algebraic degree is equal to 2. 𝐹 and 𝐹 ′ are called extended affine equivalent (EA-equivalent) if
𝐹 ′ = 𝐴′ ∘ 𝐹 ∘𝐴′′ + 𝐴, where 𝐴′, 𝐴′′ are affine permutations of F𝑛

2 and 𝐴 is an affine function on F𝑛
2 .

A function 𝐹 is called almost perfect nonlinear (APN) if for any 𝑎, 𝑏 ∈ F𝑛
2 , 𝑎 ̸= 0, equation 𝐹 (𝑥)+𝐹 (𝑥+

𝑎) = 𝑏 has at most 2 solutions. Equivalently, 𝐹 is APN if |𝐵𝑎(𝐹 )| = |{𝐹 (𝑥) +𝐹 (𝑥+ 𝑎) | 𝑥 ∈ F𝑛
2}| = 2𝑛−1

for any nonzero vector 𝑎. APN functions are of a great interest for using in cryptographic applications as
S-boxes due to their optimal differential properties. Despite the fact that this class has been intensively
studied for about half a century there are many open problems concerning APN functions.

Further we consider only quadratic APN functions. In this case 𝐵𝑎(𝐹 ) is an affine hyperplane for all
nonzero 𝑎 ∈ F𝑛

2 and 𝐵𝑎(𝐹 + 𝐿) = 𝐵𝑎(𝐹 ) or 𝐵𝑎(𝐹 + 𝐿) = F𝑛
2 ∖ 𝐵𝑎(𝐹 ), where 𝐹 is a quadratic APN

function and 𝐿 is a linear function. Let us denote by 𝑘𝐹𝐿 = |{𝑎 ∈ F𝑛
2 ∖ {0} : 𝐵𝑎(𝐹 ) = 𝐵𝑎(𝐹 + 𝐿)}|. By

the linear spectrum of 𝐹 we will mean the vector of values Λ𝐹 = (𝜆𝐹
0 , . . . , 𝜆

𝐹
2𝑛−1), where 𝜆𝐹

𝑘 is equal to

the number of linear functions 𝐿 such that 𝑘𝐹𝐿 = 𝑘. It is easy to see that
∑︀2𝑛−1

𝑘=0 𝜆𝐹
𝑘 = 2𝑛

2

.

Statement 1. The linear spectrum of a quadratic APN function is a EA-invariant.

Statement 2. Let 𝐹 be a quadratic APN function in 𝑛 variables, 𝑛 is even. Then the following statements
hold: 1) 𝜆𝐹

𝑘 = 0 for all even 𝑘 = 0, . . . , 2𝑛 − 1 and also for all odd 𝑘 < (2𝑛 − 1)/3; 2) 𝜆𝐹
2𝑛−1 > 2𝑛.

Hypothesis. Let 𝐹 be a quadratic APN function in 𝑛 variables, 𝑛 is odd. Then the following statements
hold: 1) 𝜆𝐹

𝑘 = 0 for all even 𝑘 = 0, . . . , 2𝑛 − 1 and also for all odd 𝑘 < (2𝑛−1 − 1)/3; 2) 𝜆𝐹
2𝑛−1 = 2𝑛.

This hypothesis is computationally proved for 𝑛 = 3, 5; the second item is also verified for all known
quadratic APN functions in 7 variables.

Let us consider two open problems related to the linear spectrum of a quadratic APN function. The
first one consists in obtaining an iterative construction of quadratic APN functions mentioned in [1]. For
this construction, given a quadratic APN function 𝐹 in 𝑛 variables, we need to find a linear function 𝐿
such that the special admissibility conditions hold for 𝐹 and 𝐿. It can be shown that if 𝑘𝐹𝐿 > 2𝑛−1, then
these conditions do not hold. The questions arise: what is the minimal 𝑘, say 𝑘𝑚𝑖𝑛, such that 𝜆𝐹

𝑘 > 0 and
does there always exist a linear function 𝐿 with 𝑘𝐹𝐿 = 𝑘𝑚𝑖𝑛 such that the admissibility conditions hold?

The second problem consists in finding 𝜆𝐹
2𝑛−1 for an arbitrary quadratic APN function 𝐹 . An answer

to this problem will be the first step in solving the wider open problem formulated in [2] by C. Carlet
but that was in minds of many specialists. The problem is to describe all APN functions 𝐺 for a given
APN function 𝐹 such that 𝐵𝑎(𝐹 ) = 𝐵𝑎(𝐺) for all 𝑎 ∈ F𝑛

2 , 𝑎 ̸= 0. We prove the following theorem for one
known class of quadratic APN functions.

Theorem. Let 𝐹 : F2𝑛 → F2𝑛 be a Gold function 𝐹 (𝑥) = 𝑥2𝑘+1, where gcd(𝑘, 𝑛) = 1. Then the following
statements hold: 1) if 𝑛 = 4𝑡 for some 𝑡 and 𝑘 = 𝑛/2±1, then 𝜆𝐹

2𝑛−1 = 2𝑛+𝑛/2; 2) otherwise 𝜆𝐹
2𝑛−1 = 2𝑛.

The research is supported by the Russian Foundation for Basic Research (project no. 15-31-20635).
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A graph is called regular of valency 𝑘, if each of its vertices has exactly 𝑘 neighbours. A graph is
called a Deza graph with parameters (𝑛, 𝑘, 𝑏, 𝑎), 𝑏 ≥ 𝑎, if it has 𝑛 vertices, is regular of valency 𝑘, and
the number of common neighbours of any two of its vertices belongs to the set {𝑎, 𝑏}. A Deza graph is
called a strictly Deza graph, if it has diameter 2 and is not strongly regular.

Let 𝐺 be a finite group. Let 𝑆 be a non-empty subset of 𝐺 such that 1𝐺 /∈ 𝑆 and, for any 𝑠 ∈ 𝑆,
one also has that 𝑠−1 ∈ 𝑆. A graph 𝐶𝑎𝑦(𝐺,𝑆) with the vertex set 𝐺 and the adjacency defined by
𝑥 ∼ 𝑦 ⇔ 𝑥𝑦−1 ∈ 𝑆, ∀𝑥, 𝑦 ∈ 𝐺, is called a Cayley graph of the group 𝐺 with generating set 𝑆.

Recall that the Paley graph of order 𝑞, where 𝑞 ≡ 1(mod 4), is a Cayley graph 𝐶𝑎𝑦(F+
𝑞 , 𝑆𝑞), which is

strongly regular with parameters (𝑛, 𝑘, 𝜆, 𝜇) = (𝑞, 𝑞−1
2 , 𝑞−5

4 , 𝑞−1
4 ). Here F+

𝑞 and 𝑆𝑞 are the additive group
and the set of non-zero squares of the finite field F𝑞 of order 𝑞, respectively.

Let 𝑞1, 𝑞2 be two odd prime powers such that 𝑞2 − 𝑞1 = 4. Let 𝑆𝑞1 := F*
𝑞1 ∖ 𝑆𝑞1 and 𝑆𝑞2 := F*

𝑞2 ∖ 𝑆𝑞2

be the sets of non-squares in the corresponding fields. Let 𝑆0 := {(0, 𝑥) | 𝑥 ∈ F*
𝑞2}, 𝑆1 := 𝑆𝑞1 × 𝑆𝑞2 and

𝑆2 := 𝑆𝑞1 × 𝑆𝑞2 . In this talk we will discuss the following theorem and some related results.

Theorem. The graph 𝐶𝑎𝑦(F+
𝑞1 × F+

𝑞2 , 𝑆0 ∪ 𝑆1 ∪ 𝑆2) is a strictly Deza graph with parameters

(𝑣, 𝑣+3
2 , 𝑣+7

4 , 𝑣+3
4 ), where 𝑣 = 𝑞1𝑞2.

The reported study was funded by RFBR according to the research project No. 16-31-00316.
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We consider finite undirected graphs without loops and multiple edges. A graph is called regular of
valency 𝑘, if each of its vertices has exactly 𝑘 neighbours. A graph is called a Deza graph with parameters
(𝑛, 𝑘, 𝑏, 𝑎), 𝑏 ≥ 𝑎, if it has 𝑛 vertices, is regular of valency 𝑘, and the number of common neighbours
of any two of its vertices belongs to the set {𝑎, 𝑏}. A Deza graph is called a strictly Deza graph, if it
has diameter 2 and is not strongly regular. The vertex connectivity 𝜅(Γ) of a connected graph Γ is the
minimum number of vertices one has to remove in order to make the graph Γ disconnected (or empty).

In 1985, Brouwer and Mesner proved [1] that the vertex connectivity of a strongly regular graph is
equal to its valency. In 2009, Brouwer and Koolen generalized [2] this result to the class of distance-regular
graphs.

Vertex connectivity of strictly Deza graphs obtained from the construction [3, theorem 3.1] based on
strongly regular graphs was studied in [3]. The case of the eigenvalue 𝑟 ≤ 2 remained open.

In this work we study the vertex connectivity of strictly Deza graphs obtained from strongly regular
graphs with eigenvalue 𝑟 = 1 (i.e. from complements to Seidel strongly regular graphs). Note that the
construction [3, theorem 3.1] requires the existence of involutive automorphism of a strongly regular graph
which interchanges the only non-adjacent vertices. Such automorphisms in the case of the complements
to the triangular and lattice graphs have been studied in [2].

In this work the following results were obtained:

Theorem 1. Let ∆ be a strictly Deza graph obtained from either the complement to the triangular graph
𝑇 (𝑛), 𝑛 ≥ 3, or from the complement to one of the following sporadic graphs: Petersen graph, Shrikhande
graph, Clebsch graph, Schlafli graph, Chang graph. Then the vertex connectivity of ∆ is equal to 𝑘, where
𝑘 is the valency of the graph ∆.

Theorem 2. Let ∆ be a Deza graph obtained from the complement to 𝑛 × 𝑛-lattice. Then the vertex
connectivity of ∆ is equal to 𝑘 − 1, where 𝑘 is the valency of the graph ∆.

Note that in the case of the complement to 𝑛 × 𝑛-lattice, where 𝑛 is even, and the automorphism
which interchanges 𝑛/2 pairs of rows the construction [3, theorem 3.1] gives vertex-transitive (moreover,
Cayley) strictly Deza graphs.

The reported study was funded by RFBR according to the research project No. 16-31-00316.
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Let 𝒢 denote the category whose objects are undirected graphs without multiple edges and morphisms
are graph homomorphisms. We will define the notion of double mapping cylinder in the category 𝒢. Let
𝒢′ be subcategory of 𝒢, whose objects do not contain 𝑃3 as an induced subgraph. We will show that
the Hom complex functor 𝐻𝑜𝑚(𝑇,__) which was defined by Lovász maps double mapping cylinders in
graphs to homotopy pushouts in topological spaces where 𝑇 is a graph in 𝒢′.

References

[1] E. Babson, D. N. Kozlov, Complexes of graph homomorphisms. Israel J. Math. 152 (2006) 285–312.

[2] P. Csorba, F. H. Lutz, Graph coloring manifolds. In Algebraic and geometric combinatorics 423 Contemp.
Math., Amer. Math. Soc., Providence, RI (2006) 51–69.
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The main subject of this talk is directed strongly regular graph, a possible generalization of the well-
known (undirected) strongly regular graphs for the directed case, introduced by Duval in [1]. A directed
strongly regular graph (DSRG) with parameters (𝑛, 𝑘, 𝑡, 𝜆, 𝜇) is a regular directed graph on 𝑛 vertices
with valency 𝑘 such that every vertex is incident with 𝑡 undirected edges; the number of directed paths of
length 2 directed from a vertex 𝑥 to another vertex 𝑦 is 𝜆 if there is an arc from 𝑥 to 𝑦; and 𝜇 otherwise.

Using structural analysis of DSRGs we observed that a significant amount of them can be obtained
from smaller DSRGs with the aid of suitably defined graph product (𝜋-join) which is based on a partition
of the vertex set of the smaller graph. Inspired by this observation we derived the necessary and sufficient
conditions to solve, when a homogeneous partition 𝜋 of a DSRG altogether with 𝜋-join construction lead
to a bigger DSRG. In fact, the partition 𝜋 has to be equitable with a prescribed quotient matrix depending
just on the parameters of the small DSRG. Using this approach we constructed dozens of infinite families
of DSRGs. According to the catalogue of parameter sets with order at most 110, located on the webpage
of A. Brouwer and S. Hobart (see [2]), we confirm the existence of DSRGs for 29 open parameter sets.
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Let 𝐺 be a finite group and let 𝜌(𝐺) be the set of prime divisors of the irreducible character degrees of
𝐺. The character degree graph of 𝐺, denoted by ∆(𝐺), is a graph with vertex set 𝜌(𝐺) and two vertices
𝑎 and 𝑏 are incident in ∆(𝐺), if 𝑎𝑏 divides some irreducible character degree of 𝐺. Many researchers
try to know the properties of ∆(𝐺). For example, in [2] and [3], it was shown that for every group 𝐺,
diameter of ∆(𝐺) is at most 3. Also, authors in [3] showed that if 𝐺 is a finite simple group, then ∆(𝐺)
is connected unless 𝐺 ∼= 𝑃𝑆𝐿(2, 𝑞). There are many characterizations of finite groups. In [1], Khosravi
and et al. introduced a new characterization of finite groups based on the character degree graph as
if 𝐺 has the same order and the character degree graph as that of a certain group 𝑀 , then 𝐺 ∼= 𝑀 .
Khosravi and et al., in [1], proved that the groups of orders less than 6000 are uniquely determined by
their character degree graphs and orders. In this talk, we are going to show that some simple groups are
uniquely determined by their orders and character degree graphs.
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The four color theorem is known as a theorem whose proof is very long. Bowlin and Brin tried to
obtain a shorter proof of the theorem using binary trees, associahedron and an infinite group known as
Thompson’s 𝐹 in 2013 [1]. The 𝑛-dimensional associahedron is a graph composed by binary trees having
𝑛− 2 leaves. They proved that, if for any pair of vertices 𝐷 and 𝑅 in the associahedron, there is a good
path called a “valid path” from 𝐷 to 𝑅, then the four color theorem follows. We consider the distance in
the 𝑛-dimensional associahedron, and proved that for any pair of vertices 𝐷 and 𝑅 in the 𝑛-dimensional
associahedron which have distance 𝑛, exists a valid path from 𝐷 to 𝑅. In addition, we found a family
{𝐺𝑛−2,𝑘 | 0 ≤ 𝑘 ≤ 𝑛−2} of vertices in the 𝑛-dimensional associahedron such that for every vertex 𝐷 there
is a valid path from 𝐷 to 𝐺𝑛−2,𝑘 for some 𝑘 under a certain assumption. In this talk, we will introduce
the relationship between the four color theorem and Thompson’s 𝐹 , and our results.
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We will consider maximum skew energy of tournaments. For a digraph 𝐷, the skew-adjacency matrix
𝑆(𝐷) of 𝐷 is defined as 𝑆(𝐷) = 𝐴(𝐷) − 𝐴(𝐷)𝑇 , where 𝐴(𝐷) is the {0, 1}-adjacency matrix of 𝐷 and
skew energy 𝜀(𝐷) is defined as the sum of absolute values of eigenvalues of 𝑆(𝐷). A digraph 𝐷 = (𝑉,𝐸)
is called a tournament if either (𝑥, 𝑦) ∈ 𝐸 or (𝑦, 𝑥) ∈ 𝐸 holds for any pair of 𝑥, 𝑦 ∈ 𝑉 (𝑥 ̸= 𝑦).

For any digraph 𝐷 with 𝑛 vertices, 𝜀(𝐷) ≤ 𝑛
√
𝑛− 1 holds [1]. Equality holds if and only if 𝑆(𝐷)

is a skew symmetric conference matrix. This means that if there exists a digraph 𝐷 which attains the
upper bound, then 𝑛 is a multiple of 4. Otherwise, we can improve this upper bound. For odd 𝑛 and any
digraph 𝐷 with 𝑛 vertices, 𝜀(𝐷) ≤ (𝑛− 1)

√
𝑛 holds. Equality holds if and only if 𝐷 is a doubly regular

tournament. Since 𝑛 ≡ 3 (mod 4) holds if there exist doubly regular tournaments with 𝑛 vertices [3],
there never exists a digraph 𝐷 which attains the upper bound if 𝑛 ≡ 1 (mod 4). In both of these upper
bounds, tournaments gives the maximum skew energy.

We give the upper bound of skew energy of tournaments with 𝑛 vertices for 𝑛 ≡ 2 (mod 4) by
using 𝛼-skew energy, which is the sum of the 𝛼-th power of the absolute values of the eigenvalues of a
skew-adjacency matrix. For 𝑛 ≡ 2 (mod 4) and any tournament 𝑇 , 𝜀(𝑇 ) ≤ 2

√
2𝑛− 3 + (𝑛 − 2)

√
𝑛− 3

holds.
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A Roman dominating function (or just RDF) on a graph 𝐺 = (𝑉,𝐸) is a function 𝑓 : 𝑉 −→ {0, 1, 2}
satisfying the condition that every vertex 𝑢 for which 𝑓(𝑢) = 0 is adjacent to at least one vertex 𝑣 for
which 𝑓(𝑣) = 2. The weight of an RDF 𝑓 is the value 𝑓(𝑉 (𝐺)) =

∑︀
𝑢∈𝑉 (𝐺) 𝑓(𝑢). An RDF 𝑓 can be

represented as 𝑓 = (𝑉0, 𝑉1, 𝑉2), where 𝑉𝑖 = {𝑣 ∈ 𝑉 : 𝑓(𝑣) = 𝑖} for 𝑖 = 0, 1, 2. The Roman domination
number, 𝛾𝑅(𝐺), of 𝐺 is the minimum weight of an RDF on 𝐺. Several parameters related to the Roman
dominating functions have been considered in the very recent years, for example, Roman bondage number,
Roman reinforcement number, total Roman domination number, multiple Roman domination number,
paired Roman domination number, and etc. We first establish several bounds for the Roman domination
number of a graph under some given properties of the graph. We then determine the computational
complexity of several Roman domination parameters, and show that the decision problem for these
parameters are NP-complete even when restricted to bipartite graphs or chordal graphs. We also study
Roman domination parameters in Random graphs.
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By using method of graph theory, we can construct cubic graphs whose faces are squares, pentagons
and hexagons. We call sometimes these graphs as fullerene graphs, see [1, 2]. In general, a fullerene,
is a cubic three connected graph whose faces entirely composed of triangles, squares, pentagones and
hexagons. There are many problems concerning with fullerene graphs and many properties of them are
studied by mathematician. Given a triple 𝑡 = (𝑝3, 𝑝4, 𝑝5), we denote by 𝑝𝑡 the class of 3-valent polyhedral
graph having 𝑝3 triangular, 𝑝4 quadrilateral, 𝑝5 pentagonal and ℎ hexagonal faces, and no other faces. The
number of vertices of a polyhedron belonging to the class 𝑝𝑡 is 𝑛 = 2𝑝3 + 2𝑝4 + 2𝑝5 + 2ℎ− 4. In chemical
applications it is often important to make the distinction between the symmetry of the polyhedron as a
combinatorial object and the physical symmetry of its realization as an affine object in 3𝐷 space.

In general, a (4,5,6) - polyhedron is a cubic planar graph whose faces are squares, pentagons and
hexagons. A (3,5,6) - polyhedron is a cubic planar graph whose faces are triangles, pentagons and
hexagons. In this paper, by using the methods of [3], we compute the symmetry group of both (3,5,6)
and (4,5,6) polyhedrons.
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By “graph” we mean “an undirected graph without loops and multiple edges”. A graph Γ on 𝑣 vertices
is strongly regular with parameters (𝑣, 𝑘, 𝜆, 𝜇) if it is regular of degree 𝑘, the number of common neighbors
of two adjacent vertices is equal to 𝜆 and the number of common neighbors of two non-adjacent vertices
is equal to 𝜇 (see, for example, [1]). A graph Γ on 𝑣 vertices is a Deza graph with parameters (𝑣, 𝑘, 𝑏, 𝑎),
where 𝑣 > 𝑘 ≥ 𝑏 ≥ 𝑎 ≥ 0, if it is regular of degree 𝑘 and the number of common neighbors of two distinct
vertices takes on one of two values 𝑎 or 𝑏, not necessarily depending on the adjacency of the two vertices
(see [2]). A strictly Deza graph is a Deza graph which is not strongly regular and has diameter 2.

Let Γ be a strongly regular graph with parameters (𝑣, 𝑘, 𝜆, 𝜇). It’s not difficult to see, that
(1) if 𝜇 = 𝑘 then Γ is a complete multipartite graph;
(2) if 𝜇 = 𝑘 − 1 then Γ is the pentagon;
(3) if 𝜆 = 𝑘 − 1 then Γ is an union of cliques.

Let Γ1 and Γ2 be graphs. Γ2-extension of Γ1 is a graph obtained by replacing vertices of Γ1 by copies
of Γ2 and joining all edges between vertices from distinct copies of Γ2 whenever the correspondent vertices
of Γ1 were adjacent.

In [2] it was obtained a result analogue to (1) for Deza graphs. It was proved, Γ is a strictly Deza
graph with parameters (𝑛, 𝑘, 𝑘, 𝑎) if and only if Γ is isomorphic to 𝑛2-coclique extension of a strongly
regular graph Γ1 with parameters (𝑛1, 𝑘1, 𝜆, 𝜇) for some 𝑛1, 𝑘1, 𝜆, 𝜇 and 𝑛2, where 𝜆 = 𝜇 and 𝑛2 ≥ 2.
Our aim is to obtain results analogue to (2) and (3) for Deza graphs. We prove the following theorem.

Theorem. A graph Γ is a strictly Deza graph with parameters (𝑣, 𝑘, 𝑘−1, 𝑎) if and only if Γ is isomorphic
to 2-clique extension either of a complete multipartite graph or of a strongly regular graph with parameters
( 𝑣
2 ,

𝑘−1
2 , 𝑎−2

2 , 𝑎
2 ).
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This is joint work with Sergey V. Avgustinovich and Elena V. Konstantinova

The objects of our research are spectra of Star graphs. The Star graph 𝑆𝑛 is the Cayley graph on
the symmetric group 𝑆𝑦𝑚𝑛 generated by the set of transpositions {(1 2), (1 3), . . . , (1 𝑛)}. In 2009
A. Abdollahi and E. Vatandoost conjectured [1] that the spectrum of 𝑆𝑛 is integral, moreover it contains
all integers in the range from −(𝑛−1) up to 𝑛−1 (with the sole exception that when 𝑛 6 3, zero is not an
eigenvalue of 𝑆𝑛). In 2012 R. Krakovski and B. Mohar [3] proved that the spectrum of 𝑆𝑛 is integral, more
precisely, they showed that for 𝑛 > 2 and for each integer 1 6 𝑘 6 𝑛 the values ±(𝑛− 𝑘) are eigenvalues
of the Star graph 𝑆𝑛. They also gave a lower bound on multiplicities of eigenvalues of 𝑆𝑛. At the same
time, G. Chapuy and V. Feray [2] showed another approach to obtain the exact values of multiplicities
of eigenvalues of 𝑆𝑛. Their combinatorial approach is based on the Jucys–Murphy elements and the
standard Young tableaux. In 2015 this approach was used to obtain the multiplicities of eigenvalues of
𝑆𝑛 for 𝑛 6 10 [3].

In this talk we present analytic formulas to calculate multiplicities of eigenvalues of the Star graph.

Theorem 1. Let 𝑛 > 2 and for each integer 1 6 𝑘 6 𝑛 the values ±(𝑛 − 𝑘) are eigenvalues of the
Star graph 𝑆𝑛. The multiplicities 𝑚𝑢𝑙(𝑛 − 𝑘) for 𝑘 = 2, 3, 4, 5 of eigenvalues of 𝑆𝑛 are given by the
following formulas:

𝑚𝑢𝑙(𝑛− 2) = (𝑛− 1)(𝑛− 2), 𝑛 > 3; (1)

𝑚𝑢𝑙(𝑛− 3) =
(𝑛− 3)(𝑛− 1)

2
(𝑛2 − 4𝑛 + 2), 𝑛 > 4; (2)

𝑚𝑢𝑙(𝑛− 4) =
(𝑛− 2)(𝑛− 1)

6
(𝑛4 − 12𝑛3 + 47𝑛2 − 62𝑛 + 12), 𝑛 > 4; (3)

𝑚𝑢𝑙(𝑛− 5) =
(𝑛− 2)(𝑛− 1)

24
(𝑛6 − 21𝑛5 + 169𝑛4 − 647𝑛3 + 1174𝑛2 − 820𝑛 + 60), 𝑛 > 5. (4)

The following theorem gives an improved lower bound on multiplicity 𝑚𝑢𝑙(𝑡) of eigenvalues 𝑡 := 𝑛− 𝑘 of
the Star graph which were obtained using the standard Young tableaux.

Theorem 2. In the Star graph 𝑆𝑛 for sufficiently large 𝑛 and for a fixed 𝑡 the multiplicity 𝑚𝑢𝑙(𝑡) of

eigenvalue 𝑡 is at least 2
1
2𝑛 log𝑛(1−𝑜(1)).

Thus, for any eigenvalue 𝑡 of 𝑆𝑛 the order of logarithm of multiplicities 𝑚𝑢𝑙(𝑡) is the same that 𝑛!.
The work has been supported by RFBS Grant 15-01-05867.
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Computational complexity is studied for the Vertex Cover problem (VC) over classes of highly
connected plane graphs based on Euclidean distances between their vertices (proximity graphs). Among
those graphs are Delaunay triangulations and their special forms, namely half-𝜃6 graphs. Study of their
graph-theoretic properties received focus in the literature (Dillencourt et. al, 1996, Bose et. al 2012, Biniaz
et. al, 2015). Our motivation lies in the field of network security applications as Delaunay triangulations
and their relatives represent convenient network topologies which admit efficient local routing (Bose et. al
2014). More specifically VC can be considered as a problem of optimal guarding of a network where one
needs to locate positions of sensors (i.e. guards) at the network nodes such that each network link is within
the scope of some sensor. Being of interest VC complexity over classes of Delaunay triangulations and
their relatives did not get much attention in the literature. In this work we claim VC strong NP-hardness
over the class of 4-connected half-𝜃6 graphs.

Planar graph is referred to as planar triangulation when all faces for some its plane embedding
(except for possibly outer face) are triangles. Our approach to study the VC complexity for proximity
graphs involves two stages. In the first one problem complexity is studied over specific classes of planar
triangulations not taking into account their underlying geometric structure; in the second stage some
result from graph drawing is applied that embeds graphs from these classes as Delaunay or half-𝜃6
graphs.

It is known that VC is polynomially solvable over classes of outerplanar graphs (Bodlaender, 1998)
including outerplanar (always Delaunay realizable due to Dillencourt, 1990) triangulations. Polynomial
solvability of VC also holds true over chordal graphs (Gavril, 1972) which become triangulations when
they are 3-connected and planar. More general result is known on VC polynomial solvability over class
of planar graphs of bounded chordality (Kaminski, 2009). Let us observe that only a few instances of
outerplanar and 3-connected planar chordal graphs are in fact 4-connected. The 3-connectivity also
requires from instances of the class of planar triangulations whose chordality does not exceed 𝑘 to have
outer facial cycle of length not exceeding 𝑘. In our work we claim strong NP-hardness of VC over the
class of 4-connected planar triangulations. Considering highly connected instances of triangulations
is motivated by the fact that 4-connected (i.e. Hamiltonian) ones are graph isomorphic to Delaunay
triangulations (Dillencourt, 1996). Since the proof of this isomorphism is not constructive we get weaker
result on the NP-hardness of VC for 4-connected half-𝜃6 graphs i.e. Delaunay triangulations build under
another metric.

This work was supported by Russian Science Foundation, project 14-11-00109.
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This is joint work with O. A. Alekseeva

The prime graph (or the Gruenberg–Kegel graph) Γ(𝐺) of a finite group 𝐺 is a graph, in which the
vertices are prime divisors of |𝐺|, and two distinct vertices 𝑝 and 𝑞 are adjacent if and only if 𝐺 contains
an element of order 𝑝𝑞.

Lucido [1] described finite simple groups 𝐺 such that the connected components of the graph Γ(𝐺)
are trees, i.e. connected graphs without cycles. Furthermore, in this paper Lucido described the structure
of a finite group whose prime graph is a tree. We consider more general problem of the description of the
structure of a finite group whose prime graph contains no triangles (3-cycles).

In the talk we discuss both the recent published in [2, 3] and some new our results on this problem.

The work is supported by the Russian Science Foundation (project no. 15-11-10025).
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Fatemeh Koorepazan–Moftakhar
Department of Pure Mathematics, University of Kashan, Kashan, Iran

f.k.moftakhar@gmail.com

This is joint work with A. R. Ashrafi

Given a finite group 𝐺 and a conjugacy class 𝑋 of involutions in 𝐺, the local fusion graph 𝐹 (𝐺,𝑋)
has vertex set 𝑋 and two distinct involutions in 𝑋 are joined by an edge if their product has odd order.
The aim of this paper is to study the automorphism group of the local fusion graphs of dihedral, semi-
dihedral, dicyclic, the group 𝑈2𝑚𝑛

∼= 𝑍𝑚 o−1 𝑍2𝑛 and 𝑉8𝑛 = ⟨𝑎, 𝑏 | 𝑎2𝑛 = 𝑏4 = 𝑒, 𝑎𝑏𝑎 = 𝑏−1, 𝑎𝑏−1𝑎 = 𝑏⟩.
Some open questions are also presented.
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In 1991 G.P. Wene [1] has noted the hypothesis: any finite semifield 𝐷 is right or left primitive, i.e.
every element of the loop 𝐷* is a the set of right- or left-ordered powers of an element in a semifield 𝐷.
In 2004 I. Rúa [2] has indicated a counter-example to Wene’s conjecture, using Knuth’s semifield of order
32. The second counter-example is a Hentzel–Rúa semifield of order 64 [3], which has been constructed
in 2007. The Hentzel–Rúa semifield is the unique semifield of order 64 which is neither left nor right
primitive.

We investigate the structure of counter-example Hentzel–Rúa semifield and prove the conjecture that
its loop is one-generated (weaker than Wene conjecture).

Lemma 1. The automorphism group of Hentzel–Rúa semifield ℋ is isomorphic to the symmetric group
𝑆3 and hence has exactly three involution automorphisms.

Lemma 2. The semifield ℋ contains exactly six maximal subfields: 5 subfields of order 8, three from
them are stabilizators of different involution automorphisms; the unique subfield of order 4, which is a
stabilizator of automorphism of order 3.

Lemma 3. The spectrum of the loop ℋ* is {1, 3, 5, 6, 7}. The left and right spectra coincide with
{1, 3, 6, 7, 12, 15}.

Lemma 4. For any 𝑛 ≥ 10 the loop ℋ* is an union of all 𝑛-th degrees of any element not from maximal
subfields, so ℋ* is one-generated.

The author was funded by RFBR (project 16-01-00707).
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We consider orbit partitions of groups of automorphisms for the symplectic graph and apply Godsil–
McKay switching. As a result, we find four families of strongly regular graphs with the same parameters as
the symplectic graphs, including the one discovered by Abiad and Haemers. Also, we prove that switched
graphs are non-isomorphic to each other by considering the number of common neighbors of three vertices.
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Let 𝑘 be a positive integer. A k-coloring of vertices of a graph 𝐺 = (𝑉,𝐸) is a map 𝑓 : 𝑉 → {1, . . . , 𝑘}.
If 𝑓(𝑣) = 𝑠 for some vertex 𝑣, then 𝑠 is the color of 𝑣. A 𝑘-coloring of the vertices of a graph is called
perfect if the multiset of colors of all neighbors of a vertex depends only on its own color.The induction
principle is an efficient approach, that can be used for studying perfect colorings of bipartite graphs.

Consider a bipartite graph 𝐺(𝑉1, 𝑉2). A half-coloring of the graph 𝐺 is a coloring of vertices of the set
𝑉𝑖. A half-coloring is called feasible, if it is a part of some perfect coloring of the graph 𝐺. Two feasible
half-colorings are called matched, if they complement each other to the perfect coloring of the whole
graph.

Let 𝑓1 : 𝑉1 → {1, . . . , 𝑘} be an arbitrary coloring of vertices from the set 𝑉1. Induction operation
carries on half-coloring 𝑓1 to coloring of the whole graph in the following way: vertices of the set 𝑉2 with
the same multiset of neighborhood colors are assigned the same color not from the set {1, . . . , 𝑘}.

The following lemma holds:

Lemma 1. A half-coloring of any bipartite graph 𝐺 is feasible if and only if the corresponding induced
coloring is perfect.

A bipartite coloring is a perfect coloring of the graph 𝐺, if the color sets of the corresponding half-
colorings do not intersect. Otherwise the perfect coloring of the graph 𝐺 is called nonbipartite. Note, that
color sets of half-colorings coincide in nonbipartite case, if 𝐺 is connected.

The following concept is proposed to obtain the description of all perfect colorings for the graph 𝐺:

1. to obtain the complete description of feasible half-colorings of graph 𝐺 using Lemma 1;

2. to construct all matched complements for each feasible half-coloring in bipartite and nonbipartite
cases.

Let us call the concept described above an induction principle.
Authors [1] used the induction principle to obtain the complete description of perfect colorings for

the infinite prism graph. It’s easy to adapt results obtained in [1] to finite case - finite prism graphs and
Mobius ladders.
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This is joint work with Pavol Božek and Maria Tothova

The new branches of geometry appear with transferring the results of other mathematical sections,
such as set theory, algebra, etc. generally. Hilbert suggested to consider the linguistic rules in addition
to the axioms R2. In the present study hypothesis extended to the plane itself , which is proposed as
text. Levels of study of the text are its internal relations. As basic postulates were used: permutation,
mirror and with unitary matrix symmetries by Dieudonne, table automorphisms and transfer symmetry
by H.Weyl, definition of symmetry by M.Born, binary automorphisms by F.Bachman.

Extended table of Dieudonne symmetries was built on the base of relational algebra and semiotic
analyze:

1. Existing of set (𝐴 ̸= ∅ Zermelo).
2. Existing of relation (𝑎1R𝑎2 Codd).
3. Membership element of set (𝑎 ∈ 𝐴 Fraenkel).
4. Universal relation (𝑓 : Ω → Ω′ implication).
5. Linguistic description of the set (Descartes).
6. Linguistic presentation of the relation (Descartes).
7. Saving cardinality (m(𝐴) = 𝑐𝑜𝑛𝑠𝑡 Lagrange).
8. Saving power relations (𝑛 = 𝑐𝑜𝑛𝑠𝑡 in 𝐶1𝑥

𝑛 +𝐶2𝑦
𝑛 +𝐶3𝑥

𝑛−1𝑦𝑛−1 + ....+𝐶𝑘−1𝑥+𝐶𝑘𝑦 +𝐶0 Klein).
9. Linguistic order (�⃗� = 𝑥i + 𝑦j + 𝑧k + 𝑤 Hamilton).
10. Mathematical order (𝑎𝑖 ≺ 𝑎𝑖+1, where 𝑎𝑖, 𝑎𝑖+1 ∈ R Kantor).
11. Permutation (𝑎𝑖 ↔ 𝑎𝑗).
12. Mirror (𝑎𝑖 ×−1 = −𝑎𝑖).
Symmetries are joined the set theory and universal algebra, so there are two methods for solving the

characteristic equation T�⃗� = 𝜆�⃗� are exist.
The Jordan curves are the basis for many of the kinematic mechanisms. An exactitude of mechanism

causes the trajectory of its motion [2]. The solution of differential equations can be obtained in an
analytical form if the trajectory is given of the exact analytical formula. Experiments have shown a
difference between the theoretical and actual trajectory less than 5%.

Acknowledgments. The contribution is sponsored by VEGA MŠ SR No 1/0367/15 prepared project
"Research and development of a new autonomous system for checking a trajectory of a robot"and project
KEGA MŠ SR No 006STU-4/2015 prepared project "University textbook "The means of automated
production"by interactive multimedia format for STU Bratislava and Košice". Supported by Minobrnauki
of Russian Federation, Grant GZ/TVG 14(01.10).
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An 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗) is called a Toeplitz matrix if it has constant values along all diagonals
parallel to the main diagonal. A directed Toeplitz graph is a digraph with Toeplitz adjacency matrix. In
this talk I will discuss conditions for the existence of hamiltonian cycles in directed Toeplitz graphs.

Notation: The main diagonal of an 𝑛× 𝑛 Toeplitz adjacency matrix will be labeled 0 and it contains
only zeros. The 𝑛− 1 distinct diagonals above the main diagonal will be labeled 1, 2, . . . , 𝑛− 1 and those
under the main diagonal will also be labeled 1, 2, . . . , 𝑛 − 1. Let 𝑠1, 𝑠2, . . . , 𝑠𝑘 be the upper diagonals
containing ones and 𝑡1, 𝑡2, . . . , 𝑡𝑙 be the lower diagonals containing ones, such that 0 < 𝑠1 < 𝑠2 <
· · · < 𝑛 and 0 < 𝑡1 < 𝑡2 < · · · < 𝑛. Then, the corresponding Toeplitz graph will be denoted by
𝑇𝑛 < 𝑠1, 𝑠2, . . . , 𝑠𝑘; 𝑡1, 𝑡2, . . . , 𝑡𝑙 >. That is 𝑇𝑛 < 𝑠1, 𝑠2, . . . , 𝑠𝑘; 𝑡1, 𝑡2, . . . , 𝑡𝑙 > is the graph with vertices
1, 2, . . . , 𝑛 in which the edge (𝑖, 𝑗) occurs if and only if 𝑗 − 𝑖 = 𝑠𝑝 or 𝑖 − 𝑗 = 𝑡𝑞 for some p and q
(1 ≤ 𝑝 ≤ 𝑘, 1 ≤ 𝑞 ≤ 𝑙).
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This is joint work with I. B. Gorshkov

By “group” we mean “a finite group” and by “graph” “an undirected graph without loops and multiple
edges”. Let 𝐺 be a group. Denote by 𝜋(𝐺) the set of all prime divisors of the order of 𝐺 and by 𝜔(𝐺)
the spectrum of 𝐺, i.e. the set of all its element orders. The set 𝜔(𝐺) defines the Gruenberg–Kegel graph
(or the prime graph) Γ(𝐺) of 𝐺; in this graph the vertex set is 𝜋(𝐺) and distinct vertices 𝑝 and 𝑞 are
adjacent if and only if 𝑝𝑞 ∈ 𝜔(𝐺).

We say that a graph Γ with |𝜋(𝐺)| vertices is realizable as the Gruenberg–Kegel graph of a group 𝐺
if there exists a labeling of the vertices of Γ by distinct primes from 𝜋(𝐺) such that the labeled graph is
equal to Γ(𝐺). In [1] it was proved, a graph is realizable as the Gruenberg–Kegel graph of a solvable group
if and only if its complement is 3-colorable and triangle free. In [2] it was proved, the Gruenberg–Kegel
graph of an almost simple group is isomorphic to the Gruenberg–Kegel graph of an appropriate solvable
group if and only if its complement is triangle free. The following question arises.

Question. Is there a graph without 3-cocliques, whose complement is not 3-colorable, but which is
isomorphic to the Gruenberg–Kegel graph of an appropriate non-solvable group? In the other words, is
there a graph which is realizable as the Gruenberg–Kegel graph of an appropriate non-solvable group,
but is not realizable as the Gruenberg–Kegel graph of any solvable group?

The Grotzsch graph is the smallest example of triangle-free graph which is not 3-colorable (see Fig. 1).

Fig. 1: Grotzsch graph

We prove the following theorem.
Theorem. The complement of the Grotzsch graph is not realizable as the Gruenberg–Kegel graph of a
group.

Acknowledgment. The work is supported by the grant of the President of Russian Federation for young
scientists (grant no. MK-6118.2016.1), by the Integrated Program for Fundamental Research of the Ural
Branch of the Russian Academy of Sciences (project no. 15-16-1-5), by the Program of the State support
of leading universities of the Russia (agreement no. 02.A03.21.0006 of 27.08.2013). The author is a winner
of the competition for young mathematicians of the Dmitry Zimin Foundation “Dynasty” in 2013 year.
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New infinite family of Cameron-Liebler line classes
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This is joint work with Alexander Gavrilyuk and Tim Penttila

Let PG(3, 𝑞) denote the 3-dimensional projective space over the finite field F𝑞. A Cameron-Liebler
line class of PG(3, 𝑞) is a set of lines that shares a constant number 𝑥 of lines with every spread of
PG(3, 𝑞). The number 𝑥 is called the parameter of the Cameron-Liebler line class. It can be seen from
the definition that the complementary set to a Cameron-Liebler line class is a Cameron-Liebler line class
with parameter 𝑞2 + 1 − 𝑥, so that we may assume 𝑥 ≤ (𝑞2 + 1)/2.

The examples of Cameron-Liebler line classes include an empty set of lines (𝑥 = 0), the set of all lines
in a plane (𝑥 = 1) or, dually, through a point (𝑥 = 1), and, the union of the previous two examples with
𝑥 = 1, assuming that the point is not in the plane (𝑥 = 2). Cameron-Liebler line classes first appeared
in the study [1] (see also [8]) on collineation groups of PG(𝑛, 𝑞), 𝑛 ≥ 3, that have equally many orbits on
lines and on points. For more comprehensive background, we refer to recent papers [3–6].

It was conjectured in [1] that the only Cameron-Liebler line classes are the examples mentioned above,
i.e., 𝑥 ≤ 2. The first counterexample was found by Drudge in PG(3, 3) with 𝑥 = 5, which was generalised
later by Bruen and Drudge [2] to an infinite family having parameter 𝑥 = (𝑞2 + 1)/2 for all odd 𝑞. With
the aid of computer Rodgers [7] constructed many more new examples for certain 𝑥 and prime powers
𝑞. Some of them have been shown in [3], [6] to be a part of a new infinite family of Cameron-Liebler line
classes with parameter 𝑥 = (𝑞2 + 1)/2 for 𝑞 ≡ 5 or 9 (mod 12).

In this work, we construct one more infinite family of Cameron-Liebler line classes in PG(3, 𝑞) with
parameter 𝑥 = (𝑞2 + 1)/2 for all odd 𝑞, which are somehow related to the line classes of Bruen and
Drudge, but not equivalent to them. In particular, for 𝑞 = 5, there exist at least 3 pairwise non-equivalent
Cameron-Liebler line classes with 𝑥 = (𝑞2 + 1)/2 = 13.
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We consider Jacobians of graphs as discrete analogues of Jacobians of Riemann surfaces. More
precisely, Jacobian of graph is an Abelian group generated by flows satisfying the first and the second
Kirchhoff rules. We define a circulant graph as the Cayley graph of a cyclic group. The family of circulant
graphs is quite wide. It includes complete graphs, cyclic graphs, antiprism graphs, even prism graphs and
Moebius ladder graph. We propose a new method to find the structure of Jacobians for a large subfamily
of circulant graphs.
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On 3-generated lattices with standard and dual standard elements among generators
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In [1] a 3-generated lattice is proved to be distributive if two of its generators are standard. It means
that such lattice has at most 18 elements. Obviously the same result is true if there are two dual standard
generators. We consider 3-generated lattices when one generator is standard and another generator is
dual standard.

Theorem. Let L be a 3-generated lattice. If one of generator of L is standard and another generator is
dual standard then L contains at most 21 elements.

It should be noted that the estimate in Theorem is sharp.
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This is joint work with A. G Gein

Studying the structure of a lattice often relies on distinguishing elements with certain good properties,
for instance, distributive, standard, or neutral elements of the lattice. For example, a pair of elements a
and b is called distributive in a lattice L if c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b) for any element c [1].

We call a pair of elements a and b is called neutral in a lattice L if (x ∨ a) ∧ (x ∨ b) ∧ (a ∨ 𝑏) =
(x ∧ a) ∨ (x ∧ b) ∨ (a ∧ b) for any element x.

Theorem. The lattice in Figure is generated by the elements a, b and c and the pair ( a, b) is neutral.
Conversely, let a lattice be generated by elements a, b and c such that the pair ( a, b) is neutral. Then
the lattice is a homomorphic image of the lattice in Figure.

The proof of the theorem is based on the main results of the paper [2].

Figure.
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On claw-free strictly Deza graphs
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This is joint work with V. V. Kabanov

All graphs under consideration are undirected graphs without loops and multiple edges.
Let 𝑣, 𝑘, 𝑏 and 𝑎 be integers such that 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑘 < 𝑣. A graph 𝐺 is a Deza graph with parameters

(𝑣, 𝑘, 𝑏, 𝑎) if

∙ 𝐺 has exactly 𝑣 vertices;

∙ for any vertex 𝑢 in 𝐺 its neighbourhood 𝑁(𝑢) has exactly 𝑘 vertices;

∙ for any two distinct vertices 𝑢,𝑤 of 𝐺 the size of 𝑁(𝑢) ∩𝑁(𝑤) takes on one of two values 𝑏 or 𝑎.

The key of difference between a strongly regular graph and a Deza graph is that the size of𝑁(𝑢)∩𝑁(𝑤)
does not necessary depend on adjacency 𝑢 and 𝑤.

A strictly Deza graph is a Deza graph of diameter 2 that is not strongly regular.
The study of strongly regular graphs has a long history (see for example [1]), and the study of strictly

Deza graphs started since the paper written by five authors M. Erickson, S. Fernando, W. H. Haemers,
D. Hardy and J. Hemmeter [2] had been published.

A subset of the vertices of a graph is called coclique if there does not exist adjacent vertices. The
complete bipartite graph 𝐾𝑚,𝑛 is a graph whose set of vertices can be divided into subsets of the
cardinalities 𝑚 and 𝑛 such that each vertex in one subset is adjacent to every vertex in the other subset
and to no vertex in its own subset. A claw is another name for the complete bipartite graph 𝐾1,3. A
claw-free graph is a graph that does not have a claw as an induced subgraph. Claw-free graphs were
initially studied as a generalization of line graphs. The line graph of a graph 𝐺 is another graph 𝐿(𝐺)
that represents the adjacencies between edges of 𝐺.

In [1] it was described the class of strictly Deza line graphs. In [2] it was described the class of claw-free
strictly Deza graphs which are the union of closed neighborhoods of some two non-adjacent vertices, that
is there are some two distinct vertices aren’t belonging to any 3-coclique.

In this work we proved the following theorem.

Theorem. Let 𝐺 be a claw-free strictly Deza graph, and any two of its non-adjacent vertices belong to
3-coclique. Then 𝐺 is one of that graphs:

1. the 4 × 𝑛-lattice, where 𝑛 > 2, 𝑛 ̸= 4;

2. the 2-extension of 3 × 3-lattice;

3. Deza line graph with parameters (20, 6, 3, 2).
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All necessary definitions and notions can be found in [1]. It is well known that the automorphism group
(the isometry group) Aut(𝐺𝐹 (2𝑚)) of the binary vector space 𝐺𝐹 (2𝑚) with respect to the Hamming
metric is the group of all transformations (𝑥, 𝜋) fixing 𝐺𝐹 (2𝑚) with respect to the composition (𝑥, 𝜋) ·
(𝑦, 𝜋′) = (𝑥 + 𝜋(𝑦), 𝜋 ∘ 𝜋′). Given a binary code 𝐶 the setwise stabilizer of 𝐶 in Aut(𝐺𝐹 (2𝑚)) is called
the automorphism group Aut(𝐶) of 𝐶. The symmetry group Sym(𝐶) of a code 𝐶 is defined as Sym(𝐶) =
{𝜋 ∈ 𝑆𝑛 : 𝜋(𝐶) = 𝐶}. A code 𝐶 is called transitive if there is a subgroup 𝐻 of Aut(𝐶) acting transitively
on the codewords of 𝐶. If we additionally require that for any 𝑥, 𝑦 ∈ 𝐶, 𝑥 ̸= 𝑦 there is a unique element
ℎ of 𝐻 such that ℎ(𝑥) = 𝑦, then 𝐻 acting on 𝐶 is called a regular group [2] and the code 𝐶 is called
propelinear (for the original definition see [3]). In this case the order of 𝐻 is equal to the size of 𝐶. Each
regular subgroup 𝐻 < Aut(𝐶) naturally induces a group operation on the codewords of 𝐶 defined in the
following way: 𝑥 * 𝑦 := ℎ𝑥(𝑦), such that the codewords of 𝐶 form a group with respect to the operation
*, isomorphic to 𝐻: (𝐶, *) ∼= 𝐻, which is called propelinear structure on 𝐶. The notion of propelinearity
is important from algebraic and combinatorial coding theory point of view since it provides a general
view on linear and additive codes. It is obvious that any propelinear code is transitive but not vice versa.
Many known good codes are propelinear, for example all 𝑍4-linear codes, see also [4] and list of references
there.
Theorem 1. Let (𝐷, *) and (𝐶, *) be propelinear structures such that (𝐷, *) < (𝐶, *) and a group 𝐺 be
a subgroup of Sym(𝐶) ∩ Sym(𝐷) acting regularly on the right cosets from (𝐶/𝐷) ∖ 𝐷. Then 𝐶 ∖ 𝐷 is
propelinear.

There are many good (uniformly packed and transitive) codes that have the multiplicative group of
𝐺𝐹 (2𝑚) as a subgroup of their symmetry group. Taking this group as 𝐺 we obtain the examples below.
Denote by 𝑃 the Preparata codes constructed in [6]. Denote by 𝐻 the cyclic Hamming code with the
generator polynomial 𝑚1(𝑥) and a Goethals code by Γ. By 𝐻 ′, 𝑃 ′ and Γ′ denote the known 𝑍4-linear
perfect, Preparata and Goethals codes respectively. These codes form nested families: 𝐻 ⊃ 𝑃 ⊃ Γ,
𝐻 ′ ⊃ 𝑃 ′ ⊃ Γ′.
Theorem 2. Let 𝐷 be the cyclic code of length 𝑛, 𝑛 = 2𝑚, 𝑚 ≥ 3, 𝑚 is odd, with the generator polynomial
𝑚1(𝑥)𝑚𝜎+1(𝑥), where ((𝜎 + 1), (2𝑚 − 1)) = 1. Then the code 𝐻 ∖𝐷 is propelinear.
Theorem 3. Let 𝑛 be 4𝑚,𝑚 ≥ 2. The codes 𝐹𝑛

2 ∖𝐻, 𝐻 ∖ 𝑃 , 𝑃 ∖ Γ, 𝐻 ′ ∖ 𝑃 ′ and 𝑃 ′ ∖ Γ′ of length 𝑛 are
propelinear.

The work is supported by the Russian Science Foundation (grant 14-11-00555).
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Affine connections on three-dimensional homogeneous spaces
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Let (𝐺,𝑀) be a three-dimensional homogeneous space, where 𝐺 is a Lie group on the manifold 𝑀 .
We fix an arbitrary point 𝑜 ∈ 𝑀 and denote by 𝐺 = 𝐺𝑜 the stationary subgroup of 𝑜. It is known
that the problem of classification of homogeneous spaces (𝐺,𝑀) is equivalent to the classification (up to
equivalence) of pairs of Lie groups (𝐺,𝐺) such that 𝐺 ⊂ 𝐺. In the study of homogeneous spaces it is
important to consider not the group 𝐺 itself, but its image in Diff(𝑀). In other words, it is sufficient to
consider only effective actions of 𝐺 on 𝑀 . Since we are interested only the local equivalence problem, we
can assume without loss of generality that both 𝐺 and 𝐺 are connected. Then we can correspond the pair
(ḡ, g) of Lie algebras to (𝐺,𝑀), where ḡ is the Lie algebra of 𝐺 and g is the subalgebra of ḡ corresponding
to the subgroup 𝐺. This pair uniquely determines the local structure of (𝐺,𝑀), that is two homogeneous
spaces are locally isomorphic if and only if the corresponding pairs of Lie algebras are equivalent. A pair
(ḡ, g) is effective if g contains no non-zero ideals of ḡ, a homogeneous space (𝐺,𝑀) is locally effective if
and only if the corresponding pair of Lie algebras is effective. An isotropic g-module m is the g-module
ḡ/g such that 𝑥.(𝑦+g) = [𝑥, 𝑦]+g. The corresponding representation 𝜆 : g → gl(m) is called an isotropic
representation of (ḡ, g). The pair (ḡ, g) is said to be isotropy-faithful if its isotropic representation is
injective. If there exists at least one invariant connection on (ḡ, g) then this pair is isotropy-faithful [1].

We divide the solution of the problem of classification all three-dimensional isotropically–faithful pairs
(ḡ, g) into the following parts. We classify (up to isomorphism) faithful three-dimensional g-modules 𝑈 ,
this is equivalent to classifying all subalgebras of gl(3,R) viewed up to conjugation. For each obtained g-
module 𝑈 we classify (up to equivalence) all pairs (ḡ, g) such that the g-modules ḡ/g and 𝑈 are isomorphic.
All of this pairs are described in [2].

Invariant affine connections on (𝐺,𝑀) are in one-to-one correspondence [3] with linear mappings
Λ: ḡ → gl(m) such that Λ|g = 𝜆 and Λ is g-invariant. We call this mappings (invariant) affine connections
on the pair (ḡ, g). The curvature and torsion tensors of the invariant affine connection Λ are given by
the following formulas: 𝑅 : m ∧m → gl(m), (𝑥1+g) ∧ (𝑥2+g) ↦→ [Λ(𝑥1),Λ(𝑥2)]−Λ([𝑥1, 𝑥2]); 𝑇 : m ∧m →
m, (𝑥1+g) ∧ (𝑥2+g) ↦→ Λ(𝑥1)(𝑥2+g)−Λ(𝑥2)(𝑥1+g) − [𝑥1, 𝑥2]m.

We restate the theorem of Wang on the holonomy algebra of an invariant connection: the Lie algebra
of the holonomy group of the invariant connection defined by Λ : ḡ → gl(3,R) on (ḡ, g) is given by
𝑉 +[Λ(ḡ), 𝑉 ]+[Λ(ḡ), [Λ(ḡ), 𝑉 ]]+. . . , where 𝑉 is the subspace spanned by {[Λ(𝑥),Λ(𝑦)]−Λ([𝑥, 𝑦])|𝑥, 𝑦 ∈ ḡ}.

We describe all local three-dimensional homogeneous spaces, allowing affine connections, it is
equivalent to the description of effective pairs of Lie algebras, and all invariant affine connections
on the spaces together with their curvature, torsion tensors and holonomy algebras. We use the
algebraic approach for description of connections, methods of the theory of Lie groups, Lie algebras
and homogeneous spaces.
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A representation for compact 3-manifolds with non-empty non-spherical boundary via 4-colored graphs
(i.e. regular 4-valent graphs endowed by a proper edge-coloration with four colors) has been introduced
in [1], where an initial tabulation/classification of such manifolds has been obtained, up to 8 vertices of
the representing graph.

Computer experiments show that the number of graphs/manifolds grows very rapidly with the
increasing of the vertices. As a consequence we focused our attentions on the case of 3-manifolds which
are the complements of knots or links in the 3-sphere. In this context we obtained the classification of
these 3-manifolds, up to 12 vertices of the representing graphs, showing the type of the links involved
(they are exactly 21, and among them 16 are prime).

For the particular case of knot complements, the classification has been recently extended up to 16
vertices: there are exactly 2 knot complements, the trivial knot complement (6 vertices) and the trefoil
knot complement (16 vertices).

All these results are contained in [2], which will soon appear on the arXiv.
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This is joint work with Sivaramakrishnan Sivasubramanian

Let 𝑇 be a tree on 𝑛 vertices with Laplacian matrix 𝐿 and 𝑞-Laplacian ℒ𝑞. Let 𝜒𝑘 be the character of
the irreducible representation of the symmetric group S𝑛 indexed by the hook partition 𝑘, 1𝑛−𝑘 and let
𝑑𝑘(𝐿) be the normalized hook immanant of 𝐿 corresponding to the character 𝜒𝑘. In [1, 3–5], inequalities
are known for 𝑑𝑘(𝐿) as 𝑘 increases. By using matchings and assigning statistics to vertex orientations,
we generalize these inequalities to the matrix ℒ𝑞, for all 𝑞 ∈ R and to the bivariate 𝑞, 𝑡-Laplacian ℒ𝑞,𝑡

for a specific set of values 𝑞, 𝑡, where both 𝑞, 𝑡 ∈ R or both 𝑞, 𝑡 ∈ C. Our statistic based approach also
gives generalizations of inequalities given in [2] for a Hadamard inequality changing index 𝑘(𝐿) of 𝐿, to
the matrices ℒ𝑞 and ℒ𝑞,𝑡 for trees.
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In this paper, we generated some class of golden graphs (Graphs with eigenvalues as golden ratio).
First, we have proved logically that, for which 𝑛 (number of vertices), tree 𝐴𝑛 (double headed snake) and
Prism 𝐼𝑛 are golden graphs. Next which Mobious ladder are golden graphs and also proved 𝐶5𝑘 +𝐾1 are
golden graphs. And also for which values of 𝑖, 𝑗, 𝑘 the tree 𝑇 [𝑖, 𝑗, 𝑘] are golden graph. Similarly, for which
values of 𝑖1, 𝑖2, . . . , 𝑖𝑛 the tree 𝑇 [𝑖1, 𝑖2, . . . , 𝑖𝑛] are golden graphs. We have proved logically that the tree
𝑈𝑛 (single headed snake) is not golden graph. We have proved the graph 𝐺1 + 𝐺2, where 𝐺1 is regular
graph and 𝐺2 is prism, as golden graph and also 𝐾𝑛 +𝑃4 as golden graph. In the end we have constructed
golden graphs using prism, Mobious ladder, trees (𝑇 [𝑖, 𝑗, 𝑘], 𝑇 [𝑖1, 𝑖2, . . . , 𝑖𝑛]), 𝐶5𝑘+𝐾1, 𝐺+𝑃4 and 𝐺+𝐶5.
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This is joint work with M. EniOluwafe

The main goal of this paper is to classify the fuzzy subgroups of the finite symmetric group 𝑆𝑛. First,
an equivalence relation on the set of all fuzzy subgroups of a group G is defined. Without any equivalence
relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial
group. In this paper, classifying the fuzzy subgroups structure of a finite symmetric groups 𝑆𝑛(𝑛 ≥ 5) is
made. An explicit formula for the number of distinct fuzzy subgroups of 𝑆𝑛 is indicated. We also count
the number of fuzzy subgroups for a particular class of finite symmetric groups.

One of the most important problems of fuzzy group theory is to classify the fuzzy subgroups of a finite
groups. This topic has enjoyed a rapid development in the last few years. In our case the corresponding
equivalence classes of fuzzy subgroups are closely connected to the chains of subgroups in 𝑆𝑛. As a guiding
principle in determining the number of these classes, we found the number of maximal chains of 𝑆𝑛. Note
that an essential role in solving our counting problem is played again by the Inclusion-Exclusion Principle.
It leads us to some recurrence relations, whose solutions have been easily found.
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Let 𝐺 be a connected graph. Let 𝐻 be a family of connected graphs. Then 𝐺 is said to be 𝐻-free if it
contains no induced sub-graph isomorphic to 𝐻. There are several important graph classes characterized
by a single forbidden induced sub-graph. Examples of graph classes defined in terms of a single forbidden
sub-graph is the 𝐾3-free graphs and the 𝐶4-free graphs.

In this talk, I would discussed the average eccentricities of 𝐾3-free graphs and 𝐶4-free graphs in terms
of their order and minimum degrees. This can be interpreted as a method of minimizing the average of the
maximum time delay of transferring messages from one vertex to the other in a modeled communication
network.
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A graph 𝐺 is said to be 𝑘−distinguishable [1] if the vertex set can be colored using 𝑘 colors such that
no nontrivial automorphism of 𝐺 fixes all the color classes. Distinguishing number 𝐷(𝐺) is the least 𝑘
for which 𝐺 is 𝑘−distinguishable.

A graph 𝐺 is said to be 𝑘−list distinguishable [3] if each of the vertices can be colored from
corresponding given lists of size 𝑘 such that 𝐺 is 𝑘−distinguishable. List distinguishing number 𝐷𝑙(𝐺)
is the least 𝑘 for which 𝐺 is 𝑘−list distinguishable. In this talk we discuss some results supporting the
conjecture [3] that 𝐷(𝐺) = 𝐷𝑙(𝐺) for any graph 𝐺. We discuss another statement [2] which strengthen
the conjecture [3].
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Let Φ be a function with some special properties. Properly speaking, it is an N-function. In our talk
we will consider a number of aspects of Φ−harmonic analysis on graphs. In particular, we will introduce
the key definitions and will reveal that the ones in question are well-defined. Also we will give an overview
of our results that bring discrete analogs of classical theorems for harmonic function in the usual sense:
uniqueness theorem, Harnack’s inequality, Harnack’s principle. Our work generalizes results obtained
in [1].
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A latin square of order 𝑛 is an 𝑛 × 𝑛 array of 𝑛 symbols in which each symbol occurs exactly once
in each row and in each column. A 𝑑-dimensional array with the same property is called a latin 𝑑-cube.
Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears
exactly once. If in a set of latin squares, any two latin squares are orthogonal then the set is called
Mutually Orthogonal Latin Squares (MOLS). From the definition we can ensure that a latin 𝑑-cube is
the Cayley table of a 𝑑-ary quasigroup. Denote by 𝑄 the underlying set of the quasigroup. A system
consisting of 𝑡 𝑠-ary functions 𝑓1, . . . , 𝑓𝑡 (𝑡 ≥ 𝑠) is orthogonal, if for each subsystem 𝑓𝑖1 , . . . , 𝑓𝑖𝑠 consisting
of 𝑠 functions it holds {(𝑓𝑖1(𝑥), . . . , 𝑓𝑖𝑠(𝑥)) | 𝑥 ∈ 𝑄𝑠} = 𝑄𝑠. If the system keeps to be orthogonal after
substituting any constants for each subset of variables then it is called strongly orthogonal (see [2]). If
the number of variables equals 2 (𝑠 = 2) then such system is equivalent to a set of MOLS. If 𝑠 > 2, it is
a set of Mutually Strong Orthogonal Latin 𝑠-Cubes (MSOLC). A subset 𝐶 of 𝑄𝑑 is called an MDS code
(of order |𝑄| with code distance 𝑡 + 1 and with length 𝑑) if |𝐶 ∩ Γ| = 1 for each 𝑡-dimensional face Γ.
A system of 𝑡 MSOLC is equivalent to MDS code with distance 𝑡 + 1 (see [2]). Numbers of MOLS, latin
𝑑-cubes and MDS codes for small orders are calculated in [4], [7].

Let 𝑁(𝑛, 𝑑, 𝜚) be the number of MDS codes of order 𝑛 with code distance 𝜚 and length 𝑑. An upper

bound 𝑁(𝑛, 𝑑, 2) ≤ ((1 + 𝑜(1))𝑛/𝑒𝑑)𝑛
𝑑

is proved in [6].

Theorem. For each prime number 𝑝 and 𝑑 ≤ 𝑝 + 1 if 3 ≤ 𝜚 ≤ 𝑝 or an arbitrary 𝑑 ≥ 2 if 𝜚 = 2 it holds
ln𝑁(𝑝𝑘, 𝑑, 𝜚) ≥ (𝑘 + 𝑚)𝑝(𝑘−2)𝑚 ln 𝑝(1 + 𝑜(1)) as 𝑘 → ∞, 𝑚 = 𝑑− 𝜚 + 1.

Corollary. (a) The logarithm of the number of latin 𝑑-cubes of order 𝑛 is Θ(𝑛𝑑 ln𝑛) as 𝑛 → ∞.
(b) The logarithm of the number of pairs of orthogonal latin squares of order 𝑛 is Θ(𝑛2 ln𝑛) as 𝑛 → ∞.

We use results of [5] to obtain (a) and results of [3] to obtain (b). Item (b) for a subsequence of
integers was proved in [1]. Complete text of the report is available in [8].

The work was funded by the Russian Science Foundation (grant No 14-11-00555).
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This is joint work with Modjtaba Ghorbani

Xu was the first mathematician who proposed the concept of normal Cayley graph in [8] and thenWang
et al. [7] obtained all disconnected normal Cayley graphs. Recently, the normality of edge-transitive Cayley
graphs is considered by mathematicians and one of the standard problems in this area is to determine
the normal edge-transitivity of Cayley graphs with specific orders, see [1, 1, 3, 7]. Baik et al. [1] studied
normal edge-transitivity of Cayley graphs on abelian groups of valency at most five and Bosma et al. [2]
also considered the edge-transitive Cayley graphs of valency four on non-abelian simple groups. In [2, 9]
authors obtained all tetravalent normal edge-transitive Cayley graphs on either a group of odd order or a
finite non-abelian simple group. Recently, Kovács [1] classified all connected tetravalent non-normal arc-
transitive Cayley graphs on dihedral groups and Darafsheh et al. [3] studied the normal edge-transitive
Cayley graphs on non-abelian groups of order 4𝑝, where 𝑝 is a prime number. In this paper, we consider
the hexavalent normal edge-transitive Cayley graphs on groups of order 𝑝𝑞𝑟, where 𝑝 > 𝑞 > 𝑟 > 2 are
prime numbers.
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Let 𝐺 be a finite group. Consider the group ring Z[𝐺]. A Schur ring [1,2] over 𝐺 is a subring of Z[𝐺]
generated by simple quantities 𝑆𝑖, where 𝑆𝑖 ⊆ 𝐺. Equivalently, a Schur ring over 𝐺 is an association
scheme with 𝐺 acting regularly as a subgroup of the automorphism group.

Whereas Schur rings over some classes of groups, in particular cyclic groups, have been classified, little
is known about other groups. However, recently some progress has been made in terms of enumeration [3].
Elementary abelian groups turned out to be quite resilient.

We report on new results, highlight some of the techniques, and give general constructions of Schur
rings over elementary abelian 2-groups.

References

[1] I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen. Sitzungsber. der preuss. Akad. der Wiss.
(1933) 598–623.

[2] H. Wieland, Finite permutation groups. Acad. Press, New York, 1964

[3] M. Muzychuk, The subschemes of the Hamming scheme, In: Investigations in Algebraic Theory of
Combinatorial Objects, Kluwer (1994) 187–208.

[4] M. Ziv-Av, Enumeration of Schur rings over small Groups, In: CASC Workshop 2014, LNCS 8660,(2014)
491–500.

Akademgorodok, Novosibirsk, Russia 97 August, 15-28, 2016



Abstraсts – Contributed Talks Graphs and Groups, Spectra and Symmetries

On the isomorphism problem for Cayley graphs over abelian 𝑝-groups

Grigory Ryabov
Novosibirsk State University, Novosibirsk, Russia

gric2ryabov@gmail.com

Let 𝐺 be a finite group. A Schur ring over 𝐺 is a subring of the group ring Z𝐺 that has a linear
basis associated with a special partition of 𝐺. About 40 years ago Pöschel described all 𝑆-rings over
cyclic 𝑝-groups of odd order. Applying this result Pöschel and Klin solved the isomorphism problem for
circulant graphs with 𝑝𝑘 vertices, where 𝑝 is an odd prime.

Let 𝑛 = 𝑝𝑘+1, where 𝑝 ∈ {2, 3} and 𝑘 is a positive integer. Denote by 𝒢𝑛 and 𝒫𝑛 the class of all graphs
on 𝑛 vertices and the class of graphs on 𝑛 vertices that isomorphic to Cayley graphs over 𝐺 = Z𝑝 × Z𝑝𝑘

respectively. Recently all 𝑆-rings over 𝐺 were classified in [1] for 𝑝 = 2 and in [2] for 𝑝 = 3. By using this
classification we prove the following theorem.

Theorem. In the above notation, suppose that the group 𝐺 is given by its multiplication table. Then the
following problems can be solved in time 𝑛𝑂(1) :

(1) given a graph Γ ∈ 𝒢𝑛, test whether Γ ∈ 𝒫𝑛;
(2) given graphs Γ,Γ

′ ∈ 𝒫𝑛, test whether Γ ∼= Γ
′
, and (if so) find the set of all isomorphisms between

them.
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This is joint work with Sergey Goryainov, Galina Isakova, Vladislav Kabanov and Natalia Maslova

We consider finite undirected graphs without loops and multiple edges.
A graph Γ is called a Deza graph if it is regular and the number of common neighbours of two distinct

vertices takes on one of two values. A Deza graph Γ is called strictly Deza graph if it has diameter 2 and
is not strongly regular. Let 𝑥 be a vertex of a Deza graph Γ. The subgraph of the graph Γ induced by
vertices which are at distance 2 from the vertex 𝑥 is called second neighbourhood of the vertex 𝑥.

In 1992, Gardiner, Godsil, Hensel, Royle [1] proved that a strongly regular graph which contains a
vertex with disconnected second neighbourhood is a complete multipartite graph with parts of the same
size greater or equal to 2.

Alexander Gavrilyuk proposed to study strictly Deza graphs which contain a vertex with disconnected
second neighbourhood.

Let Γ be a vertex transitive strictly Deza graph such that the second neighbourhood of each its vertex
is disconnected. It was proved [2, Theorem 1] that Γ is either edge regular or coedge regular. Also, there
were obtained a characterization of a strictly Deza graph which contain a vertex with disconnected second
neighbourhood in cases of edge regularity and coedge regularity of this graph.

In this work we proved the following theorem which is a generalization of the previous result [2,
Theorem 1].
Theorem. Let Γ be a strictly Deza graph such that the second neighbourhood of each its vertex is
disconnected. Then Γ is either edge regular or coedge regular.

Acknowledgment. The work is supported by RFBR (grant no. 16-31-00316). The last co-author is
supported by the grant of the President of Russian Federation for young scientists (grant no. MK-
6118.2016.1) and is a winner of the competition for young mathematicians of the Dmitry Zimin Foundation
“Dynasty” in 2013 year.
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Let 𝐺 be a group and N = {𝑔1, ..., 𝑔𝑛} be a set of generators of 𝐺. Following [1, p. 102] define

𝐹(𝐺,N)(𝑙) =

{︃
1, if 𝑙 = 0,

the number of elements of 𝐺 whose irreducible length in at most l, if 𝑙 > 0

to be a function of group growth of 𝐺 on the set N. Let

𝑃(𝐺,N)(𝑙) =

{︃
1, if 𝑙 = 0,

𝐹(𝐺,N)(𝑙) − 𝐹(𝐺,N)(𝑙 − 1), if 𝑙 > 0

be a group density function of 𝐺 on the set of generators N.

Question. Let 𝐺 and 𝐻 be groups, N and M be sets of generators of 𝐺 and 𝐻 respectively. Suppose,
𝑃(𝐺,N)(𝑙) = 𝑃(𝐻,M)(𝑙). Are groups 𝐺 and 𝐻 isomorphic?

We prove the following theorems.

Theorem 1. Let 𝐺 and 𝐻 be groups, N and M be sets of generators of 𝐺 and 𝐻 respectively. If
𝑃(𝐺,N)(𝑙) = 𝑃(𝐻,M)(𝑙) then |N| = |M|.

Theorem 2. Let 𝐺 and 𝐻 be groups, N and M be sets of generators of 𝐺 and 𝐻 respectively. If
𝑃(𝐺,N)(𝑙) = 𝑃(𝐻,M)(𝑙) then |𝐺| = |𝐻|.

A set N = {𝑔1, ..., 𝑔𝑛} of generators of a group 𝐺 is called independent if ⟨N ∖ {𝑔𝑖}⟩ ∩ ⟨𝑔𝑖⟩ = ⟨𝑒⟩ is a
trivial subgroup for all 𝑖 ∈ {1, ..., 𝑛}.

We prove the following theorem.

Theorem 3. Let 𝐺 and 𝐻 be finite abelian 𝑝-groups, N and M be independent sets of generators of 𝐺
and 𝐻 respectively. If 𝑃(𝐺,N)(𝑙) = 𝑃(𝐻,M)(𝑙) then 𝐺 ∼= 𝐻.

The most interesting case of the Question is the case when 𝐺 and 𝐻 are finite simple non-abelian
groups, N and M are independent sets of their generators.

Conjecture. Let 𝐺 and 𝐻 be finite non-abelian simple groups, N and M be independent sets of generators
of 𝐺 and 𝐻 respectively. If 𝑃(𝐺,N)(𝑙) = 𝑃(𝐻,M)(𝑙) then 𝐺 ∼= 𝐻.

Theorem 4. Let 𝐴8 = ⟨N⟩ and 𝐿3(4) = ⟨M⟩, where N and M are independent sets of generators. Then
𝑃(𝐴8,N)(𝑙) ̸= 𝑃(𝐿3(4),M)(𝑙).
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We investigate the Bubble-Sort graph 𝐵𝑆𝑛, 𝑛 > 2, that is the Cayley graph on the symmetric group
𝑆𝑦𝑚𝑛 generated by transpositions from the set 𝑡 = {𝑡𝑖𝑖+1 ∈ 𝑆𝑦𝑚𝑛, 1 6 𝑖 6 𝑛 − 1}. In 2006 Yosuke
Kikuchia and Toru Arakib have shown [1] that 𝐵𝑆𝑛, 𝑛 > 4, contains all cycles of even length 𝑙, where
4 6 𝑙 6 𝑛!. However a characterization of these cycles has not been done.

In this talk, a characterization of small cycles is given by their canonical forms. A sequence of
transpositions 𝐶𝑙 = 𝑡𝑖0𝑖0+1...𝑡𝑖𝑙−1𝑖𝑙−1+1, where 1 6 𝑖𝑗 6 𝑛 − 1, and 𝑖𝑗 ̸= 𝑖𝑗+1 for any 𝑗 ∈ {0, ..., 𝑙 − 1},
such that 𝜋𝑡𝑖0𝑖0+1...𝑡𝑖𝑙−1𝑖𝑙−1+1 = 𝜋, where 𝜋 ∈ 𝑆𝑦𝑚𝑛, is said to be a form of a cycle 𝐶𝑙 of length 𝑙 in the
Bubble-Sort graph. The canonical form 𝐶𝑙 of an 𝑙-cycle is called a form with a lexicographically maximal
sequence of indices. For cycles of a form 𝐶𝑙 = 𝑡𝑖𝑖+1𝑡𝑗𝑗+1...𝑡𝑖𝑖+1𝑡𝑗𝑗+1, where 𝑙 = 2𝑘, and 𝑡𝑖𝑖+1𝑡𝑗𝑗+1 appears
𝑘 times, we write 𝐶𝑙 = (𝑡𝑖𝑖+1𝑡𝑗𝑗+1)𝑘.

The following results are obtained.

Theorem 1. Each of the vertices of the Bubble-Sort graph 𝐵𝑆𝑛, 𝑛 > 4, belongs to (𝑛−2)(𝑛−3)
2 different

4-cycles of the canonical form 𝐶4 = (𝑡𝑖𝑖+1𝑡𝑗𝑗+1)2, where 1 6 𝑖 < 𝑗 − 1 6 𝑛 − 1. Totally, there are
(𝑛−2)(𝑛−3)𝑛!

8 different cycles of length four in the graph.

Theorem 2. Each of the vertices of the Bubble-Sort graph 𝐵𝑆𝑛 belongs to (𝑛−2) 6-cycles of the canonical
form

𝐶1
6 = (𝑡𝑖+1𝑖+2𝑡𝑖𝑖+1)3, 1 6 𝑖 6 𝑛− 2, 𝑛 > 3;

to (𝑛− 4)(𝑛− 3) 6-cycles of the canonical form

𝐶2
6 = (𝑡𝑖𝑖+1𝑡𝑖+1𝑖+2)(𝑡𝑗𝑗+1)(𝑡𝑖+1𝑖+2𝑡𝑖𝑖+1)(𝑡𝑗𝑗+1), 1 6 𝑖 < 𝑗 6 𝑛− 1, 𝑛 > 5,

and to (𝑛−3)(𝑛−4)(𝑛−5)
6 6-cycles of the canonical forms

𝐶3
6 = (𝑡𝑖𝑖+1𝑡𝑗𝑗+1𝑡𝑘𝑘+1)2, 𝑘 − 1 > 𝑗 > 𝑖 + 1, 𝑛 > 6;

𝐶4
6 = (𝑡𝑖𝑖+1𝑡𝑗𝑗+1𝑡𝑖𝑖+1𝑡𝑘𝑘+1𝑡𝑗𝑗+1𝑡𝑘𝑘+1), 𝑘 − 1 > 𝑗 > 𝑖 + 1, 𝑛 > 6.

In total, there are (𝑛3−9𝑛2+29𝑛−30)𝑛!
18 cycles of length six in the graph.

Analogous results about cycles of length eight are presented by Theorem 3 in the talk.
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Homotopy type of neighborhood complexes of Kneser graphs
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This is joint work with Nandini Nilakantan

A. Schrijver identified a family of vertex critical subgraphs of Kneser graphs called the stable Kneser
graphs 𝑆𝐺𝑛,𝑘. A. Bjórner and M. de Longueville proved that the neighborhood complex of the stable
Kneser graph 𝑆𝐺𝑛,𝑘 is homotopy equivalent to a k-sphere. It is also known that the neighborhood complex
of 𝐾𝐺𝑛,𝑘 is homotopy equivalent to the wedge sum of k-spheres. The main objective here is to give the
exact number for 𝐾𝐺2,𝑘, i.e. to show that the homotopy type of the neighborhood complex of 𝐾𝐺2,𝑘 is
a wedge sum of (𝑘 + 4)(𝑘 + 1) + 1 spheres of dimension k. Further we will construct a subgraph 𝑆2,𝑘 of
𝐾𝐺2,𝑘 whose neighborhood complex deformation retracts onto the neighborhood complex of 𝑆𝐺2,𝑘.
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This is joint work with R. V. Skuratovskii

We consider the conditions of supersingularity of Edwards curve [1–3]. A normalization of this curve
was constructed by us in projective form. We denote twisted Edwards curve having coefficients 𝑎 and 𝑑 as
𝐸𝑎,𝑑. It was found the mistake in conditions of supersingularity for this curve in theorem 3 of article [4].
More particularly if 𝑝 ≡ −3(mod8) there is no degenerated twisted pair of curves as it states in [4]. Also
if condition 𝑝 ≡ ±7(mod8) holds then the orders of correspondent curves are such 𝑁𝐸2

= 𝑁𝐸2−1 = 𝑝− 3
that are not equal 𝑝+ 1 as it states in [4]. For instance if 𝑝 = 31 then 𝑁𝐸2 = 𝑁𝐸2−1 = 28 = 8 · 3 + 7− 3.

The main result of this paper is the theorem.

Theorem 1. If 𝑝 ≡ 3 (𝑚𝑜𝑑 4) and 𝑝 is prime, then numbers of points on 𝑥2 + 𝑦2 = 1 + 2𝑥2𝑦2

and on 𝑥2 + 𝑦2 = 1 + 2−1𝑥2𝑦2 over 𝐹𝑝 are equal 𝑁𝐸1,2 = 𝑁𝐸1,2−1 = 𝑝 + 1 when 𝑝 ≡ 3(mod8) and

𝑁𝐸2
= 𝑁𝐸2−1 = 𝑝− 3 when 𝑝 ≡ 7(mod8).

There are two fundamental points [6] ((0,±1), (±
√
𝑎, 0)) on 𝐸𝑎,𝑑. The interesting relations between

points of 𝐸𝑎,𝑑 were found.

Theorem 2. For every no fundamental point (𝑥, 𝑦) of 𝐸𝑎,𝑑 holds the condition
(︁

1− 𝑎𝑥2

𝑝

)︁(︁
1−𝑦2

𝑝

)︁
=(︁

𝑎−𝑑
𝑝

)︁
.

If 𝑎 is a quadratic residue over 𝐹𝑝 then it exists the isomorphism between Edwards curve 𝐸1,𝑑 and
twisted Edwards curve 𝐸𝑎,𝑑, which is given by the mapping 𝑋 ↦→

√
𝑎𝑥, 𝑌 ↦→ 𝑦. This fact and the theorem

1 lead us to a condition of supersingularity of 𝐸𝑎,𝑑.

Remark. Point of order 8 exists on 𝐸𝑎,𝑑 if and only if point of order 4 exists on 𝐸𝑎,𝑑 and following

conditions holds (
1
𝑑 (1±

√
1− 𝑑

𝑎 )

𝑝 ) = 1, (
𝑎
𝑑 (1±

√
1− 𝑑

𝑎 )

𝑝 ) = 1, (𝑎
𝑝 ) = 1, (

1− 𝑑
𝑎

𝑝 ) = 1.
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Mathematical Beauty
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Philosophers of mathematical practice have recently returned to the intriguing question of
mathematical beauty. This clearly does not belong to traditional aesthetics, because of the abstractness
of mathematical matter. Interestingly, mathematicians insist on its presence in mathematics and seem
to grant it an important status. They regard mathematical beauty as a major inspiration and often a
factor motivating their choices and preferences in practice, such as the search for more elegant proofs and
solutions. Philosophers try to find an account for this very special attitude. Sceptics trumpet the fact
that mathematics has nothing to please our senses, and claim that all intellectual pleasures are simply
epistemic, hence non-aesthetic.

This talk aims to introduce the audience to the recent discussion, present the main actors and the
main lines of play. Then it suggests a new angle on the situation from which something new can be
learned to defeat a sceptic.

Using a case study from graph theory (the highly symmetric Petersen graph), this talk tries to
distinguish genuine aesthetic from epistemic or practical judgements, and correct uses of the word
“beautiful” from loose ones. It demonstrates that mathematicians may respond to a combination of
perceptual properties of visual representations and mathematical properties of abstract structures; the
latter seem to carry greater weight. Mathematical beauty thus primarily involves mathematicians’
sensitivity to aesthetics of the abstract.
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Anna Taranenko
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

taattg@mail.ru

An 𝑛-ary operation 𝑓 : Σ𝑛 → Σ, where Σ is a set of cardinality 𝑞, is called an 𝑛-ary quasigroup
of order 𝑞 if in the equality 𝑥0 = 𝑓(𝑥1, . . . , 𝑥𝑛) knowledge of any 𝑛 elements of 𝑥0, 𝑥1, . . . , 𝑥𝑛 uniquely
specifies the remaining one.

A transversal in a 𝑛-ary quasigroup 𝑓 of order 𝑞 is a set of (𝑛+1)-tuples
{︀

(𝑎𝑖0, 𝑎
𝑖
1, . . . , 𝑎

𝑖
𝑛)
}︀𝑞

𝑖=1
, 𝑎𝑖𝑘 ∈ Σ

such that 𝑎𝑖0 = 𝑓(𝑎𝑖1, . . . , 𝑎
𝑖
𝑛) for all 𝑖 ∈ {1, . . . , 𝑞} and 𝑎𝑖𝑘 ̸= 𝑎𝑗𝑘 for all 𝑖 ̸= 𝑗 and 𝑘 ∈ {0, . . . , 𝑛}.

An 𝑛-ary quasigroup 𝑓 is a composition of an (𝑛 − 𝑚 + 1)- quasigroup ℎ and an 𝑚-quasigroup 𝑔 if
there exists a permutation 𝜎 : {1, . . . , 𝑛} → {1, . . . , 𝑛} such that for all 𝑥1, . . . , 𝑥𝑛 ∈ Σ

𝑓(𝑥1, . . . , 𝑥𝑛) = ℎ(𝑔(𝑥𝜎(1), . . . , 𝑥𝜎(𝑚)), 𝑥𝜎(𝑚+1), . . . , 𝑥𝜎(𝑛)).

An 𝑛-ary quasigroup 𝑓 is called completely reducible if 𝑛 ≤ 2 or if it can be represented as a
composition of 𝑛− 1 2-ary quasigroups.

Although there exist completely reducible quasigroups without transversals, we prove that most of
such quasigroups do have transversals.

Theorem 1. Let 𝑓 be a completely reducible 𝑛-ary quasigroup of order 𝑞. If 𝑛 is odd then 𝑓 has at least

(𝑞 · 𝑞!)
𝑛−1
2 transversals. If 𝑛 is even and the most external quasigroup in a decomposition of 𝑓 has a

transversal, then 𝑓 has at least (𝑞 · 𝑞!)⌊
𝑛−1
2 ⌋ transversals.

Also, using a result of [1] we prove the following theorem that sustains a conjecture about transversals
in latin hypercubes proposed in [2].

Theorem 2. If 𝑛 is odd then every 𝑛-ary quasigroup of order 4 has a transversal.

Acknowledgments. The work is supported by the Russian Science Foundation (grant 14–11–00555).
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This is joint work with A. A. Makhnev and D. V. Paduchikh

We consider the problem of classification of arc-transitive antipodal distance-regular graphs of
diameter three. Suppose that Γ is such a graph. Then Γ is an antipodal 𝑟-cover of 𝐾𝑘+1, Γ has intersection
array {𝑘, (𝑟 − 1)𝜇, 1; 1, 𝜇, 𝑘}, where 𝑘 is the valency of Γ, 𝑟 is the size of an antipodal class of Γ and 𝜇
denotes the number of common neighbours for any two vertices at distance two in Γ, and each edge of Γ
lies in precisely 𝜆 = 𝑘− (𝑟− 1)𝜇− 1 triangles. Let Σ be the set of antipodal classes of Γ, let 𝐺 = Aut(Γ)
and let �̄� denote the permutation group, induced by 𝐺 on Σ. Then �̄� is 2-transitive on Σ. Thus, the
classification of the finite 2-transitive permutation groups is crucial for the study of such graphs, and
divides the problem of their description naturally up into two cases: �̄� is almost simple or �̄� is affine. Our
aim is to study the case when the group �̄� is almost simple. If 𝑟 ∈ {2, 𝑘}, then Γ is distance-transitive and
the classification of such graphs can be found in [1]. We also refer to [1, 3] for the case 𝜆 = 𝜇. Antipodal
distance-regular graphs of diameter three that admit an arc-transitive action of 𝑆𝑈3(𝑞) have been recently
classified (this result was announced in [4]). We show the following reduction theorem, which states that if
�̄� is almost simple and 𝜆 ̸= 𝜇, then either Γ is a cover from [4], or (𝑠𝑜𝑐(�̄�), 𝑘+1) = (𝐿𝑑(𝑞), (𝑞𝑑−1)/(𝑞−1)),
where 𝑑 ≥ 3.

Theorem. Suppose Γ is an arc-transitive distance-regular graph with intersection array {𝑘, (𝑟 −
1)𝜇, 1; 1, 𝜇, 𝑘}, where 𝑟 /∈ {2, 𝑘}, and 𝜆 ̸= 𝜇. Let 𝐺 = Aut(Γ), let Σ be the set of antipodal classes of
Γ and let �̄� denote the permutation group, induced by 𝐺 on Σ. Suppose further that the socle 𝑇 of the
group �̄� is a simple non-abelian group, and (𝑇 , 𝑘 + 1) ̸= (𝐿𝑑(𝑞), (𝑞𝑑 − 1)/(𝑞 − 1)), where 𝑑 ≥ 3. Then
𝑇 = 𝑈3(𝑞), and 𝑆𝑈3(𝑞) acts arc-transitively on Γ with parameters 𝑘 = 𝑞3 and 𝜇 = (𝑞 + 1)(𝑞2 − 1)/𝑟,
where 𝑟 divides 𝑞 + 1.

Acknowledgment. This work was supported by the grant of Russian Science Foundation, project no.
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We study the structure of local graphs of Mathon distance-regular graphs of even valency. This
is motivated by the general problem of classification of distance-regular graphs whose local graphs are
strongly regular with the second eigenvalue at most a fixed natural number 𝑛. We describe several infinite
series of locally ∆-graphs of this family, where ∆ is a pseudogeometric graph for 𝑝𝐺𝑙(𝑠, 𝑙), a strongly
regular graph that is a union of some affine polar graphs of type “−”, or a rank-3 graph, realizable by the
van Lint-Shrijver construction.

Theorem. Let 𝑞 = 22𝑡 > 2 and assume that 𝑟 > 1 divides 𝑞 − 1. Let M(𝑞, 𝑟) denote a Mathon distance-
regular graph with intersection array {𝑞, (𝑟 − 1)(𝑞 − 1)/𝑟, 1; 1, (𝑞 − 1)/𝑟, 𝑞} and let ∆ be a local graph of
M(𝑞, 𝑟). Then ∆ is arc-transitive and the following assertions hold.

(1) If 𝑟 divides 2𝑡 + 1, then either
(𝑖) 𝑟 = 2𝑡 + 1 and ∆ is a union of 2𝑡 isolated 2𝑡-cliques, or
(𝑖𝑖) 𝑟 < 2𝑡 + 1 and ∆ is a strongly regular graph with parameters (22𝑡, (2𝑡 + 1)(2𝑡 − 1)/𝑟, ((2𝑡 +

1)/𝑟 − 1)((2𝑡 + 1)/𝑟 − 2) + 2𝑡 − 2, (2𝑡 + 1)((2𝑡 + 1)/𝑟 − 1)/𝑟).
(2) If 𝑡 is even and 𝑟 divides 2𝑡/2 + 1, then either

(𝑖) 𝑟 = 2𝑡/2 + 1 and ∆ is a strongly regular graph with parameters (22𝑡, (2𝑡/2 − 1)(2𝑡 + 1), 2𝑡/2 −
2, 2𝑡/2(2𝑡/2 − 1)) that is isomorphic to VO−(4, 2𝑡/2), or

(𝑖𝑖) 𝑟 < 2𝑡/2 + 1 and ∆ is a strongly regular graph with parameters (22𝑡, 𝑧(2𝑡/2 − 1)(2𝑡 + 1), 𝑧(2𝑡/2 −
1)(3 + 𝑧(2𝑡/2 − 1)) − 2𝑡, 𝑧(2𝑡/2 − 1)(1 + 𝑧(2𝑡/2 − 1))) which is a union of 𝑧 = (2𝑡/2 + 1)/𝑟 graphs that are
isomorphic to VO−(4, 2𝑡/2).

(3) If 𝑟 is a prime divisor of 𝑞 − 1, 2 is a primitive root modulo 𝑟 and (𝑟 − 1) divides 2𝑡, then ∆ is a
rank-3 graph with parameters (22𝑡, (22𝑡−1)/𝑟, (22𝑡−3𝑟+1+𝜖(𝑟−1)(𝑟−2)2𝑡)/𝑟2, (22𝑡−𝑟+1−𝜖(𝑟−2)2𝑡)/𝑟2)
that is realized by the van Lint–Shrijver construction, where 𝜖 = (−1)2𝑡/(𝑟−1)+1.

Acknowledgement. This work was supported by the grant of Russian Science Foundation, project no.
14-11-00061.
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This is joint work with V. Avetisov, A. Gorsky and S. Nechaev

In first model we consider random nondirected networks subject to dynamics conserving vertex degrees
and study, analytically and numerically, equilibrium three-vertex motif distributions in the presence of an
external field h coupled to one of the motifs. For small h, the numerics is well described by the chemical
kinetics for the concentrations of motifs based on the law of mass action. For larger h, a transition into
some trapped motif state occurs in Erdős-Renyi networks.

The second model is devoted to an equilibrium ensemble of large Erdős-Renyi topological random
networks with two types of vertices, black and white, and fixed vertex degree prepared randomly with
the bond connection probability, 𝑝. The system energy is a sum of all unicolor triples (either all black or
all white), weighted with a chemical potential of triples, 𝜇. Minimizing the system energy, we see at any
positive 𝜇 the formation of two predominantly unicolor clusters, linked by a "string"of 𝑁𝑏𝑤 black-white
bonds. The system exhibits a critical behavior manifested in emergence of a wide plateau on the 𝑁𝑏𝑤(𝜇)-
curve. We have proposed an explanation of plateau formation in terms of statistical physics, relevant to
spinodal decomposition of 1st order phase transitions.
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Many combinatorial configurations (for example, perfect codes, latin squares and hypercubes,
combinatorial designs and their 𝑞-ary generalizations — subspace designs) can be defined as an
eigenfunction on a graph with some discrete restrictions. The study of these configurations often leads
to the question about the minimum possible difference between two configurations from the same class
(it is often related with bounds of the number of different configurations; for example, see [1–5]). Since
the symmetric difference of these two configurations is also an eigenfunction, this question is directly
related to the minimum cardinality of the support (the set of nonzeros) of an eigenfunction with given
eigenvalue. This paper is devoted to the problem of finding the minimum cardinality of the support of
eigenfunctions in the Hamming graphs 𝐻(𝑛, 𝑞). Currently, this problem is solved only for 𝑞 = 2 (see [4]).
In [6] Vorob’ev and Krotov proved the lower bound on the cardinality of the support of an eigenfunction
of the Hamming graph. In this paper we find the minimum cardinality of the support of eigenfunctions
in the Hamming graphs with eigenvalue 𝑛(𝑞− 1)− 𝑞 and describe the set of functions with the minimum
cardinality of the support.

It is well-known that the set of eigenvalues of the adjacency matrix of 𝐻(𝑛, 𝑞) is {𝜆𝑚 = 𝑛(𝑞−1)−𝑞𝑚 |
𝑚 = 0, 1, . . . , 𝑛}. The support of 𝑓 is denoted by 𝑆(𝑓). The set of vertices 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of the
graph 𝐻(𝑛, 𝑞) such that 𝑥𝑖 = 𝑘 is denoted by 𝑇𝑘(𝑖, 𝑛). We prove the following theorem:

Theorem. Let 𝑓 : 𝐻(𝑛, 𝑞) −→ R be an eigenfunction corresponding to 𝜆1, 𝑓 ̸≡ 0 and 𝑞 > 2. Then
|𝑆(𝑓)| ≥ 2(𝑞 − 1)𝑞𝑛−2. Moreover, if |𝑆(𝑓)| = 2(𝑞 − 1)𝑞𝑛−2, then

𝑓(𝑥) =

⎧⎪⎨⎪⎩
𝑐, for 𝑥 ∈ 𝑇𝑘(𝑖, 𝑛) ∖ 𝑇𝑚(𝑗, 𝑛);

−𝑐, for 𝑥 ∈ 𝑇𝑚(𝑗, 𝑛) ∖ 𝑇𝑘(𝑖, 𝑛);

0, otherwise;

where 𝑐 ̸= 0 is a constant, 𝑖, 𝑗, 𝑘,𝑚 are some numbers and 𝑖 ̸= 𝑗.

Acknowledgments. This research was financed by the Russian Science Foundation (grant No 14-11-
00555).
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Given a graph 𝐺, a subset 𝐶 ⊆ 𝑉 (𝐺) is called a perfect code (with distance 3) if each vertex of 𝐺 is
at distance no more than 1 from exactly one code vertex. We consider the graph 𝑄𝑛 of 𝑛-dimensional
binary hypercube. In this case perfect codes exist for every 𝑛 of form 𝑛 = 2𝑡 − 1 and do not exist for any
other 𝑛. In the case 𝑛 = 4𝑡 − 1 there exist Preparata-like codes (we call them as Preparata codes), which
are defined as the codes of distance 5 and size 2𝑛+1/(𝑛 + 1)2. Every Preparata code 𝑃 is included in a
unique perfect code 𝐶(𝑃 ) [1]; we denote this perfect code as 𝐶(𝑃 ).

Let 𝑓 𝑖
𝐷 denotes the orthogonal projection of the characteristic function of the set 𝐷 to the 𝑖-th

eigensubspace of the graph of 𝑄𝑛. (For any function its Fourier transform is defined as the collection of
its orthogonal projections to the eigenfunctions 𝜙𝛼(𝑥) = (−1)⟨𝛼,𝑥⟩, 𝛼, 𝑥 ∈ 𝑄𝑛.)

It is known that for any perfect code 𝐶 its characteristic function 𝜒𝐶 can be represented as follows:

𝜒𝐶 = 1/(𝑛 + 1) + 𝑓
(𝑛+1)/2
𝐶 .

Analogously, for an arbitrary Preparata code 𝑃 we have:

𝜒𝑃 = 1/(𝑛 + 1) + 𝑓
(𝑛+1)/2
𝑃 + 𝑓𝑘

𝑃 + 𝑓ℎ
𝑃 ,

where 𝑘 = (𝑛 + 1)/2 −
√
𝑛 + 1/2 and ℎ = (𝑛 + 1)/2 +

√
𝑛 + 1/2.

Theorem. Let P be an arbitrary Preparata code in the graph of 𝑛-dimensional binary hypercube. Then

𝑓
(𝑛+1)/2
𝑃 =

2

𝑛 + 1
𝑓
(𝑛+1)/2
𝐶(𝑃 ) .

It is known that an 𝑖-component 𝑅 of an arbitrary Preparata code can be extended to the 𝑖-component

𝑆(𝑅) of the perfect code 𝐶(𝑃 ). Then we have as a corollary that 𝑓
(𝑛+1)/2
𝑅 = 2

𝑛+1𝑓
(𝑛+1)/2
𝑆(𝑅) .

Acknowledgments. The work was funded by the Russian science foundation (grant 14-11-00555)
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Throughout this report, all groups are finite. Recall that a subgroup 𝑀 of a group 𝐺 is said to be
modular in 𝐺 if𝑀 is a modular element of the lattice of all subgroups of 𝐺 [1]. It means that the following
conditions are fulfilled:

(1) ⟨𝑋,𝑀 ∩ 𝑍⟩ = ⟨𝑋,𝑀⟩ ∩ 𝑍 for all 𝑋 ≤ 𝐺,𝑍 ≤ 𝐺 such that 𝑋 ≤ 𝑍, and
(2) ⟨𝑀,𝑌 ∩ 𝑍⟩ = ⟨𝑀,𝑌 ⟩ ∩ 𝑍 for all 𝑌 ≤ 𝐺,𝑍 ≤ 𝐺 such that 𝑀 ≤ 𝑍.
In the paper [2] I. Zimmermann introduced the notion of a submodular subgroup which generalizes

the notion of a subnormal subgroup. Recall that a subgroup 𝐻 of a group 𝐺 is said to be submodular in
𝐺 [2], if there exists a chain of subgroups 𝐻 = 𝐻0 ≤ 𝐻1 ≤ . . . ≤ 𝐻𝑠−1 ≤ 𝐻𝑠 = 𝐺 such that 𝐻𝑖−1 is a
modular subgroup in 𝐻𝑖 for 𝑖 = 1, . . . , 𝑠.

In [3] the class 𝑠𝑚U of all groups with submodular Sylow subgroups was investigated and some of its
properties were found. For instance, it was proved in [3] that 𝑠𝑚U forms a hereditary saturated formation,
its local function was found, criteria of the membership of a group to the class 𝑠𝑚U were established.

This report is devoted to the further development of results of the paper [3]. In particular, we obtained
the following result.

Theorem. Let 𝐺 be a group, 𝐺 = 𝐺1𝐺2 be a product of submodular subgroups 𝐺1 and 𝐺2 such that
𝐺𝑖 ∈ 𝑠𝑚U, 𝑖 = 1, 2, and (|𝐺 : 𝐺1|, |𝐺 : 𝐺2|) = 1. Then 𝐺 ∈ 𝑠𝑚U.
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Majorana theory was introduced by A. A. Ivanov [1] in 2009 as the axiomatization of certain properties
of the 2A-axial vectors of the 196,884-dimensional Griess algebra. Ivanov’s work was inspired by a result
of S. Sakuma [2] which reproved certain important properties of the Griess algebra in the context of
vertex operator algebras. Majorana theory takes the key hypotheses of Sakuma’s result to provide a
powerful framework, independent of vertex operator algebras, in which to study the Griess algebra and
other related objects.

The axioms of Majorana theory can be used to define and construct objects known as Majorana
algebras and Majorana representations. In this talk, I will present my own work on Majorana
representations of triangle-point groups. A triangle-point group is a group 𝐺 which is generated by
three involutions 𝑎, 𝑏 and 𝑐 such that 𝑎 and 𝑏 commute and such that the product of any two elements of
𝑇 := 𝑎𝐺 ∪ 𝑏𝐺 ∪ 𝑐𝐺 ∪ (𝑎𝑏)𝐺 has order at most 6. They play an important role in the study of the Monster
group and the Monster graph.

References

[1] A. A. Ivanov, The Monster Group and Majorana Involutions, Cambridge Tracts in Mathematics 176,
Cambridge University Press, 2009.

[2] S. Sakuma, 6-transposition property of 𝜏 -involutions of vertex operator algebras. Int. Math. Res. Not. (2007).

August, 15-28, 2016 112 Akademgorodok, Novosibirsk, Russia



Graphs and Groups, Spectra and Symmetries Abstraсts – Contributed Talks

A criterion of unbalance of some simple groups of Lie type

Viktor I. Zenkov
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

v1i9z52@mail.ru

A finite simple nonabelian group 𝐾 is called locally balanced (locally 1-balanced) with respect to
a prime 𝑝 if 𝑂𝑝′(𝐶𝐺(𝑥))=1 for any element 𝑥 of order 𝑝 from 𝐺 = 𝐴𝑢𝑡(𝐾). The locally unbalanced
finite simple nonabelian groups were determined in Theorem 7.7.1 from [1]. However, the item (d) of this
theorem is wrong. This mistake is removed by the following theorem.

Theorem. Let 𝐺 be a finite almost simple group, 𝐾 = 𝑆𝑜𝑐(𝐺) be a group of Lie type over a field of
characteristic 𝑟, and 𝑥 ∈ 𝐺 ∖ 𝐼𝑛𝑛𝑑𝑖𝑎𝑔(𝐾) be an element of a prime order 𝑝 ̸= 𝑟. Then the following
conditions are equivalent:

(1) 𝑂𝑝′(𝐶𝐺(𝑥)) ̸= 1;
(2) 𝑥 induces a field automorphism on 𝐾 and (|𝐶𝐾(𝑥)|, 𝑝) = 1.
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One of the known methods of building identities in matrix rings deals with eulerian multigraphs. A
multigraph is a graph which is permitted to have multiple oriented edges with same end nodes, and loops
- edges with same start and end node. Suppose, 𝒢 is an eulerian graph with 𝑛 edges and Π(𝒢) is the set of
all its eulerian paths. Every such path 𝜋 we consider to be a permutation of set {1, 2, . . . , 𝑛}, by 𝑠𝑔𝑛(𝜋)
we denote the sign of this transposition. An eulerian polynomial of the graph 𝒢 is the polynomial:

𝑃𝒢 =
∑︁

𝜋∈Π(𝒢)

𝑠𝑔𝑛(𝜋)𝑥𝜋(1) · · ·𝑥𝜋(𝑛).

The examples of eulerian polynomials are well known standard polynomials

𝒮𝑛 =
∑︁
𝜋∈𝑆𝑛

𝑠𝑔𝑛(𝜋)𝑥𝜋(1) · · ·𝑥𝜋(𝑛),

which are built from graphs with one vertex and 𝑛 loops. The identity 𝑓 = 0 is called eulerian, if 𝑓 is an
eulerian polynomial of some graph.

The identity basis of 2×2 matrices ring from eulerian polynomials is already found by M. Domokos in [1].
The following result deals with ring of upper triangular matrices 𝑈𝑇𝑛(Q), the identity basis of such ring
from non-eulerian polynomials is also found by Yu. N. Maltsev in [2].

Theorem. In the class of rings with 1, the eulerian polynomial

𝑃𝑈𝑇𝑛(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑒1, . . . , 𝑒𝑛−1) = [𝑥1, 𝑦1]𝑒1[𝑥2, 𝑦2]𝑒2 . . . 𝑒𝑛−1[𝑥𝑛, 𝑦𝑛]

forms basis of the ring 𝑈𝑇𝑛(Q). The polynomial 𝑃𝑈𝑇𝑛 is built from graph 𝐺𝑈𝑇𝑛 displayed on fig.1.

Рис. 1: 𝐺𝑈𝑇𝑛
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Given a finite group 𝐺, the spectrum of 𝐺 is the set of orders of its elements. This set is denoted by
𝜔(𝐺). Groups are called isospectral if their spectra are equal. The number of pairwise non-isomorphic
groups isospectral to a group 𝐺 is denoted by ℎ(𝐺). A group 𝐺 is called recognizable by spectrum if
ℎ(𝐺) = 1, and almost recognizable if ℎ(𝐺) is finite. We say that the recognition problem is solved for a
group 𝐺, if ℎ(𝐺) is known, and if ℎ(𝐺) is finite, the description of all pairwise non-isomorphic groups
isospectral to 𝐺 is given.

Let 𝑆 be a finite simple exceptional group of Lie type and 𝑆 ̸= 3𝐷4(2). Then 𝑆 is known to be
almost recognizable. Moreover, every finite group isospectral to 𝑆 is isomorphic to some group 𝐺 such
that 𝑆 ≤ 𝐺 ≤ Aut(𝑆) [1, Theorem 1]. So, in order to solve the recognition problem for a group 𝑆, it
suffices to describe all groups 𝐺 such that 𝜔(𝐺) = 𝜔(𝑆) and 𝑆 ≤ 𝐺 ≤ Aut(𝑆). Such descriptions already
exist for all exceptional groups except for the groups of types 𝐸6 and 𝐸7. Let us denote groups of type
𝐸6 by 𝐸𝜀

6(𝑞), 𝜀 ∈ {+,−}, where 𝐸6(𝑞) = 𝐸+
6 (𝑞) and 2𝐸6(𝑞) = 𝐸−

6 (𝑞). We complete the investigation of
recognition problem for finite simple exceptional groups of Lie type by following results:

Theorem 1. Let 𝑆 be a finite simple exceptional group 𝐸𝜀
6(𝑞), where 𝑞 is a power of prime 𝑝, and let

𝑆 < 𝐺 ≤ Aut(𝑆). Then 𝜔(𝐺) = 𝜔(𝑆) if and only if 𝐺 is an extension of 𝑆 by a field automorphism, 𝐺/𝑆
is a 3-group, 3 divides 𝑞 − 𝜀1 and 𝑝 /∈ {2, 11}.

Theorem 2. Let 𝑆 be a finite simple exceptional group 𝐸7(𝑞), where 𝑞 is a power of prime 𝑝, and let
𝑆 < 𝐺 ≤ Aut(𝑆). Then 𝜔(𝐺) = 𝜔(𝑆) if and only if 𝐺 is an extension of 𝑆 by a field automorphism, 𝐺/𝑆
is a 2-group and 𝑝 /∈ {2, 13, 17}.

These results also complete the study of recognition problem for finite simple groups of Lie type over
fields of characteristic 2 (results for classical groups are given in [2]).
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Announcement Graphs and Groups, Spectra and Symmetries

Groups and Graphs,

Metrics and Manifolds

Yekaterinburg, Russia, July, 22–30, 2017

Announcement

Krasovskii Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of Sciences,
Ural Federal University named after the first President of Russia B. N. Yeltsin and Chelyabinsk State
University organize the International Conference and PhD-Master Summer School “Groups and Graphs,
Metrics and Manifolds” (G2M2). All scientific activities will take place in one of the recreation areas
near Yekaterinburg, Russia, July, 22–30, 2017.

G2M2 aims to cover modern aspects of group theory, graph theory and 3-manifold topology, including
knot theory.

The scientific program of G2M2 includes:

∙ Lectures of main speakers

∙ Short contributions in sections

∙ Minicourses in the frame of the PhD-Master Summer School

The official language of G2M2 is English.

Confirmed Lecturers:

Michel-Marie Deza
Ecole Normale Superieure, Paris, France

Olga G. Kharlampovich
Department of Mathematics and Statistics, Hunter College, CUNY, New York, USA

Mikhail V. Volkov
Ural Federal University, Yekaterinburg, Russia

The official website of G2M2 is http://g2m2.imm.uran.ru.
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